
Decoding Syntactic  Parameters: The Superparser as Oracle

Janet Dean Fodor (jfodor@gc.cuny.edu)
Ph.D. Program in Linguistics; CUNY Graduate Center

365 Fifth Avenue, New York, NY 10016 USA

Virginia Teller (teller@cs.hunter.cuny.edu)
Department of Computer Science ; Hunter College CUNY

695 Park Avenue, New York, NY 10021 USA

Abstract

Syntactic parameter setting has proven extremely difficult to
model. The original 'switch-setting' metaphor failed  because
parametrically relevant properties of a natural language sentence
cannot be recognized without considerable  structural analysis.
The result has been a move to trial-and-error learners which
attempt to guess a grammar that can analyze (parse) the current
input sentence.  But standard variants of grammar guessing are
wasteful of the parametric information in input sentences because
they use it only as feedback after a candidate grammar has been
chosen.  We show here that performance is significantly
improved by a 'superparsing' routine which constructs a candidate
grammar on-line in response to the properties of the input
sentence.  No sentences then need to be discarded for lack of a
grammar to parse them.  The gain in learning speed can be
quantified in terms of the average number of sentences required
for convergence.  Superparsing can be achieved by the normal
sentence parsing routines,  applying a grammar that incorporates
all possible parameter values.  The superparsing learner is robust
and imposes no special demands on the input.

Natural Language Acquisition
Children exposed to a sample of sentences from a natural
language acquire its grammar in a  few years.  There is as yet
no computational model of the acquisition process that is both
effective and psychologically realistic.  The conception of the
learner's task was greatly simplified with the advent of
parameter theory (Chomsky, 1981, 1995) under which a
natural language grammar consists of an innate component
(Universal Grammar, UG) and a selection from among a finite
set of properties by which languages can differ (the
parameters).  Depending on the particular linguistic theory
assumed, a parameter might be a choice between grammar
rules, or between the presence or absence of a rule in the
grammar.  But as developed in the Chomskyan framework a
parameter specifies a more abstract property of grammatical
derivations, such as the direction of case assignment by a
verb, or the derivational level at which a universal constraint
applies, or, in more recent versions, the 'strength' of a
syntactic feature on a tree node.  The learner's task is to select
the correct setting for each relevant parameter, i.e., each
parameter whose value contributes to the derivation of  at least
one sentence of the target language.  Though the concept is
simple, the task is more challenging than was originally
appreciated.

The earliest idea was that some property of an input
sentence would trigger the correct setting of each parametric
switch.  But the needed property detectors could not be
devised, because the characteristic properties of sentences
derived by means of some parameter value v (inter alia) are

not sufficiently uniform and superficially identifiable  (Clark,
1994; Gibson & Wexler, 1994). To find the abstract proper-
ties that identify v, the derivation of the sentence must be
computed, i.e., the sentence  must be parsed. But parsing is
work, and the computational workload of a learner must be
kept within psychologically plausible limits. The problem is
that when the parser lacks the correct grammar, as it does by
definition in a learning event, it must apparently try out
multiple grammars unti l it finds a successful one. Even
though the number of parameters is limited, there are too
many possible grammars for it to be feasible for a learner to
try them all on a single sentence, either serially or in parallel.

This is where current learning models diverge . Some test
one grammar per sentence (e .g. Gibson & Wexler, 1994,
henceforth GW94) and are very slow to converge on the
correct grammar.  Others test batches of grammars at a time
(e.g. Clark, 1992; Nyberg, 1992) and thereby go beyond
what it is plausible to suppose a child is capable of.  In this
paper we discuss a novel way to use the parser to decode the
parameter values that license an input sentence, without
undue use of resources (Fodor, 1998a).  We provide here a
quantitative assessment of the substantial increase in
learning speed that this model permits compared with
traditional  grammar guessing models.

A Simple Model of Grammar Selection
A learning event begins with the learner receiving a novel
input sentence s, a sentence of the target language not
licensed by the learner's current grammar Gc.  Gc may have
some parameters set to correct values, but it also has one or
more set to incorrec t values or not set  at all. The learner first
attempts to parse s with Gc.  If the parse were successful, no
change would be made to Gc; this is error-driven learning
(Gold, 1967).  Since by hypothesis Gc does not license  s, this
parse attempt fails, and the learning device seeks an
alternative grammar.  To preserve psychological plausibility
we will make the strong assumption here that only one more
parsing attempt may be made on this same input.  Hence, the
task of finding a new grammar that does license s must be
achieved by means of just one parse.  If  it is not, s must be
discarded and learning must await further input.  Each such
discard increases the total number of inputs needed before
the target grammar is attained, and hence decreases the
speed of learning and increases the effort expended.  It is
important, therefore, for the learner to make good use of the
one parse test of a new grammar that it  is able to  conduct .  
 However, standard grammar guessing procedures extract
only minimal information from their interrogation of the
input.  Because of the single-parse restriction, just one



Number of parameters relevant to Gt (=n-i)

Avg. A  10    15 20 25 30

1 1023 32,767 1,048,575 33,554,431 1,073,741,823

10 1014 32,758 1,048,566 33,554,332 1,073,741,822

100 924 32,668 1,048,476 33,554,422 1,073,741,724

1000 24 31,768 1,047,576 33,553,432 1,073,740,824

1 million     -   - 48,576 32,554,432 1,072,741,824

1 billion  - -   - - 73,741,824

grammar must be selected to undergo the parse test, and this
selection must of necessity be made prior to parsing.  The
success or failure of this parse attempt with the hypothesized
grammar, Gh, provides feedback on the basis of which the
learner decides whether or not to adopt Gh.1  If the parse is
successful the learner will adopt Gh; if the parse fails the
learner is assumed to retain Gc.  This policy of shifting to a
new grammar only if it licenses the current input is the
Greediness  constraint of GW94 and others.  If Gh happens to
be the target grammar, it will be retained permanently and
learning is comple te.  A grammar is correct for the target
language if it has the target value for each parameter relevant
to the language.  If some parameters are irrelevant to the
target language there will be an equivalence class of correct
parameters.  For convenience in what follows we will refer to
these grammars collect ively as 'the target grammar', G t.

Assessing Grammar Selection Efficiency
A simple random choice learning model such as this will
demonstrably converge on the target grammar (Berwick &
Niyogi, 1996).  However, learning is slow largely because the
learning component bases its actions on the mere fact that
some randomly chosen Gh does, or does not, license s.  We
will show that learning could be substantially faster if instead
the parser could reliably identify for the learner a grammar
that licenses s. For the present let us suppose that this
information is provided to the learner by an oracle. Later we
will show how this oracle can be implemented.

Given Gc � Gt, what is the probability that the learner will
shift to Gt as a result of an encounter with an arbitrary input
sentence s?  At the point where Gc is rejected, the random
choice learner (without oracle) picks an alternative from
among the set of all possible grammars, of which there are 2n

for n binary parameters.  (For simplicity we treat Gc as a
candidate grammar even though it has just  failed.)  Of these,
2i are correct (are in the equivalence class Gt) where i = the
number of parameters irrelevant to the target language.  Thus
the probability that the learner's selected Gh is Gt = 2i/2n.
Observe that this is not sensitive if s uniquely determines
every parameter value in the target grammar, the learner has
no more chance of guessing correctly than if s is fully
ambiguous. This is because, as noted, this learner must make
its selection before testing out the selected grammar on s, and
so it cannot restrict its guesses to grammars which license s.

Imagine now that this learning device is equipped with an
oracle which offers the learner a grammar that licenses s (any
one of the grammars in the domain that do so).  Then the
learner could take this grammar to be Gh, and avoid wasting
attention on any grammar that does not license s. Let us say
that a learning device which considers only grammars that

license the current input meets the Licensing condition.2  For
a learner that satisfies Licensing, the chance of
hypothesizing Gt would be 1/A, where A is the degree of
ambiguity of s, measured as the number of grammars in the
domain that license  s divided by 2i (the irrelevance factor).
Clearly this is responsive to how informative the language
sample is.  For extremely ambiguous input (A approaching
2n-i), the success rate is hardly better than without the oracle.
But if s is unambiguous with respect to even one relevant
parameter, the probability of a successful guess is increased.

This shows up in the speed of learning, estimated in terms
of the number of inputs required, on average, to arrive at Gt.
This is the reciprocal of the probability of a successful
guess.3  For the oracle learner this is A; for the random guess
learner, it is 2n-i.  Table 1 shows the differences in average
number of inputs consumed for various values of A and
numbers of relevant parameters (= 2n-i-A).  On average,
performance is improved by a factor of (2n-i-A)/2n-i.  The
oracle learner, unlike the random choice learner, benefits to
the extent that the input constrains the set of candidate
grammars.

Table 1
Reduction due to oracle in average inputs to convergence

The values of A range from 1 to 2a, where a is the number
of parameters relevant to G t whose values s does not deter-
mine.  For a simple example:  Assume that 30 parameters are
relevant to Gt and a = 25.  Such a sentence might be licensed
by exactly 2 grammars, with opposite values for each of
those 25 parameters.  Or it might be licensed by grammars
with all possible combinations of values for  those
parameters, of which there are 225 = 33,554,432.  The former
situation we will term sparse ambiguity, and the latter
dense ambiguity; clearly, all situations in between are
possible also.

It seems likely that the parametric ambiguity of natural

1Licensing is related to Greediness but the difference between them is
important.  Licensing applies in the selection of Gh, while Greediness
governs only the grammar adoption stage at the end of each learning
event.  A learner that respects Licensing can also respect Greediness.
The simple learning model discussed above shows that it is possible to
obey Greediness but not Licensing.

2Licensing is related to Greediness but the difference between them
is important.  Licensing applies in the selection of Gh, while
Greediness governs only the grammar adoption stage at the end of
each learning event.  A learner that respects Licensing can  also
respect Greediness.  The simple learning model discussed above
shows that it is possible to obey Greediness but not Licensing.
3Homogeneity is assumed in these calculations; no grammar is
antecedently more likely than any other to license s or to be Gt.



languages is quite sparse (A much less than 2a).  In the minia-
ture natural language domain defined by 3 parameters pre-
sented in GW94, ambiguity is less than fully dense in every
one of the 11 sentence types in which two or more parameters
are ambiguously expressed. It remains to be seen how this
scales up in a domain of more realistic size. But the principle
is clear. With maximally sparse ambigui ty, a sentence could
be ambiguous with respect to every paramete r and
nevertheless offer the oracle learner a 50% chance of guessing
the target grammar.  In general, for a constant degree of
parametric ambiguity in terms of a, sparse ambiguity is more
informative for a learning system capable of making use of it,
i.e., a learning system that has knowledge of which grammars
do and do not license the current input.

In a simple random choice system this information is
unobtainable.  It could be established only by testing every
possible grammar on s, which clearly violates the limit of one
parse per sentence (plus the original parse with Gc).  Of
course, this one-parse limit is just one instantiation of a
practical ban on excessive processing, and the limit might be
raised to two or three parses per sentence.  But this will make
little difference.  In order to significantly reduce the amount
of input needed for convergence, it would be necessary to
permit testing of each sentence with as many grammars as
required to find one that licenses it.4

However, there are other ways of improving the quality of
grammar selection which do not presuppose an ability to sort
grammars into those that do and do not license s.  We review
these in the next section.  Their effects are less easy to
quantify, but it is highly doubtful that either singly or jointly
they could substitute for the usefulness of a Licensing oracle.

Criteria for Grammar Selection
Given a particular input sentence s from the target language,
which grammar in the domain is it optimal for a learner to
hypothesize?  The grounds for selecting a grammar may be of
several kinds, differing with respect to how much information
they draw from the  current learning situation.  The preference
for one grammar over another may be (a) independent  of the
current situation, or it may (b) reference the current grammar,
and/or it may (c) reference properties of the current input.
Some criteria  of this  latter  kind may  (d) require parsing of
s with more than one  new grammar, and thus  exceed the
limit on feasible processing for a learner without an oracle,
which must select candidate grammars before knowing how
they relate to the input.

(a) Orderings on the Class of Grammars
Grammar orderings may be imposed by linguistic principles
of markedness.  One value of a parameter may be less marked
(more favored) than its other value; e.g., local binding of
anaphors may be less marked than long-distance anaphors
(Manzini & Wexler, 1987).  Or parameters may be ordered
with respect to each other:  the marked value of one parameter
may be less marked than the marked value of another

parameter (Clark, 1989).  Linguists have mostly been
cautious about embracing markedness theory, but many
markedness-type rankings are nevertheless implicitly as-
sumed in linguistic descript ions (Wacholder, 1995).  Also
under type (a):  grammars could be prioritized by linguistic
maturation if, as has been proposed, some aspects of UG
develop later than others (Wexler, 1999).

Criteria of type (a) may be helpful in resolving parametric
ambiguities.  To the extent that linguistic  markedness has an
impact on the frequency of grammar adoption by language
communities (though this is a fraught topic), type (a) criteria
can reflect the antecedent likelihood that any given grammar
is the target.  They may also reduce effort by holding
learners to simpler or linguistically more natural grammars
as long as the evidence permits.

(b) Rankings Relating to Gc

One Gc-related criterion is the Single Value Constraint
(SVC) of GW94, which requires the learner to select
grammars that differ from Gc in the value of just one
parameter.  Another is the assumption of 'indelible' or
'deterministic' learning, which requires that Gh include Gc.
For parameter theory thi is taken to mean that once a
parameter has been set, it may never be switched to its other
value (Clahsen, 1990/91).

Type (b) criteria reflect what has already been gained by
experience of the target language, insofar as this is compres-
sed into the  grammar Gc that the learner has been led to so
far.  (A learner is standardly assumed to have no memory of
past inputs or past grammar hypotheses, other than their
legacy in determining the current grammar.)  Because of
Greediness, a grammar that has been adopted by the learner
may be assumed to be more likely to have some parameters
correctly set than an arbitrary grammar in the  domain; and
a  grammar similar to such a grammar may be presumed to
share its virtues.  The worth of these considerations has been
disputed, but we need not enter the debate here; see Berwick
& Niyogi (1996) and Sakas & Fodor (in press) for
discussion.  Clearly it is desirable for a learning device to
have some way to hold onto past gains.  To adopt a
completely fresh hypothesis at each step, as permitted in an
unconstrained guessing model, does nothing to improve the
probability of  success as learning proceeds.

(c) Rankings Based on Properties of s Identifiable
   by Parsing s with at Most One New Grammar

Type (c) criteria are sensitive to the current input but com-
patible with the ban on excessive processing even for a
learner that  first selects a grammar and then tests it.  Input-
sensitive criteria can deliver hard information.  They consti-
tute the learner's contact with the facts of the language  and
so should be a particularly helpful guide to the correct
grammar.

Greediness and error-driven learning fall under type (c) as
well as (b), since they refer to s as well as Gc.  Greediness
ranks all grammars that do not license s lower than Gc.  The
requirement of error-driven learning ranks Gc above all other
grammars if Gc licenses s.  These two input-sensitive criteria
can be incorporated into a simple grammar guessing
procedure without a Licensing oracle, because each can be
checked with limited resources:  a parsing attempt with Gc

4Parse-testing two grammars on s would double the chance of guessing
Gt.  This would as helpful as if s were unambiguous with respect to
one parameter.  However, testing m grammars on each sentence would
increase the chance of success only linearly in m, not exponentially.



for error-driven learning, and then with one new grammar for
Greediness.

By contrast, some input-sensitive selection criteria do not
qualify as type (c) conditions because they require  (or may do
so) the checking of two or more new candidate grammars.
This threatens to violate the ban on excessive processing for
a learner without oracle.  Licensing (as opposed to Greedi-
ness) is one casualty already noted: it imposes the tough
requirement that a grammar must be known to be capable of
parsing s in order to be selected for parsing s.  Also not
possible under type (c) is comparison of the derivations
assigned to s by different candidate grammars, as would be
necessary for application of a structural simplicity metric.

Even the grammar-similarity constraints of type (b) are
affected by the limitation on processing.  The SVC has been
demonstrated by GW94 to be too stringent in that, in con-
junction with Greediness, i t can trap the learner at a local
maximum where there is no grammar that both licenses an
input sentence and differs from Gc in only one parameter
value.  If a range of alternative grammars could be evaluated,
a more general Closeness criterion could be applied instead.
The learner would adopt the grammar most similar to Gc
among those that license s (with dead heats resolved by
random choice or other criteria).  The adopted grammar
would differ from Gc by only one parameter value in many
cases, but could differ by two or more if necessary.  This
would maintain the fruits of past learning while eliminating
all local maxima.  (Note that Closeness can be seen as a
generalization of error-driven learning:  Gc is to be changed
only to the extent that is necessary in order to license the
input.)  But for this we must move up to type (d) criteria,
which are not feasible for a standard grammar guessing
learner.

(d) Rankings Based on Properties of s Identifiable
  Only by Evaluation of Multiple New Grammars

Closeness is an ideal similarity metric but (unlike the less
flexible SVC) it is a comparative crite rion which demands
knowledge of a ll the grammars that license s, so that the one
most similar to Gc can be selec ted.  This puts it beyond the
scope of any resource-limited pre-parse grammar selection
process.  Also falling under type (d) would be a simplicity
measure which favors grammars that assign the smallest
syntactic tree, or the shortest transformational derivation,
compatible with the word string.  This selection criterion
seems very plausible both linguistically and psychologically,
but is not easy to impose.  How could a resource-limited
learner set about discovering which of a million or a billion
grammars assigns the simplest structure to s?

In general:  Adding suitable grammar selection principles
to a random choice learner can improve performance, com-
pensating in part for inefficiency due to inability to discrim-
inate between grammars that do and do not license s before
committing resources to those that do not.  However, the
present analysis of grammar selection strategies makes clear
that the most potent selection principles are also beyond the
reach of such a system, and for much the same reason.  We
next show that both weaknesses can be remedied by the same
means.  With one change in how the parse test is conducted,
the guessing learner can gain both a Licensing oracle which
eliminates useless grammar guesses, and also the powerful type

(d) criteria which improve the quality of guesses in case more
than one grammar meets the Licensing condition, i.e., in case
of parametric ambiguity.

Superparsing:  A Constructive Process
of Gh Selection

Inefficiency results from formulating a grammar hypothesis
in advance of parsing the input string.  This was assumed to
be unavoidable, given the patent unfeasibility of first analyz-
ing the string with all grammars as a basis for selecting one
from among them.  But if an optimal grammar choice cannot
be made before parsing s, or after parsing s, perhaps it can be
made in the course of parsing s.  The solution we will outline
is to let the ongoing parse shape the formulation of Gh.  Total
parametric decoding cannot be achieved by this means, for
reasons we will explain, but most of the desirable learning
characteristics we have been seeking do follow.  By the end
of the parse, the learner will know of one grammar that
licenses s.  Hence there will be no wastage of input due to
lack of a grammar to parse it.  The grammar the parser finds
will always be drawn from among the A grammars that
license s, rather than from the total set of 2n grammars (or 2n-i

relevant grammars), so the learner will be taking full advan-
tage of parametric disambiguation provided by the input.
Where disambiguation is not total, Closeness and a structural
simplicity metric can be applied to choose a good candidate,
as indicated below.

Selecting a grammar that licenses s, during the course of
parsing s, is feasible.  Fodor (1998a) suggested the following
procedure.  The parsing routines set  about parsing s with the
current grammar Gc.  If s is not licensed by Gc this parse
attempt will break down at some place in the sentence.  When
it does, the parser should not stop and merely report back its
failure, as we assumed earlier.  Instead, it should supplement
Gc with all possible parameter values and continue  processing
s with this 'supergrammar' SG.  SG must afford at least one
parse for s (as long as the sentence contains no unknown
lexical items, and does not cause a severe 'garden path' be-
yond the capacity of the parser to recover from; see Fodor,
1998b).  Where there is a choice of analysis for s, priority is
given to the parameter values in Gc; this incorporates the
error-driven learning condition.  But new parameter values
can be made use of as needed.  Any new parameter value that
is found to be necessary for parsing s is adopted by the
learner.  Thus, the superparser shuttles through the sentence
flipping parameter settings as it goes, in response to the
demands of the input sentence.  Its output consists of (i) a
complete parse tree, and (ii) a grammar that satisfies Licens-
ing.

If s is fully unambiguous with respect to all the parameter
values it expresses, the superparser has no choices to make
(above the usual within-grammar ambiguity resolution
choices of normal sentence processing).  If s is ambiguous
with respect to a parameters, SG assigns it up to 2a distinct
parse trees.  In principle the parser might identify them all.
In practice it could not, since this would require massive
parallel parsing which would violate the general ban against
excessive processing (even though it doesn't strictly violate
the one-parse-per-sentence constraint imposed above).  More
reasonable is to suppose that the parser employed by the



learner for superparsing is the same parser that will be used
throughout life for sentence comprehension.  A standard
assumption is that this is a serial device which, when it hits a
point of ambiguity, selects one structural analysis to pursue for
the sentence.55  (Parallel parsing models have been proposed,
but to conserve resources their parallelism is strictly limited,
and their consequences for superparsing do not differ signifi-
cantly from those of serial parsing.)  Thus the superparser may
be faced with choices to make between al ternative ways of
resetting parameters to assign an analysis to s. It can output
only one of the A grammars that would satisfy Licensing.  The
choice between them might be random, or other selection
criteria must be invoked.

Markedness and conservatism criteria (types (a) and (b))
could be employed, as well as input-sensitive type (c) criteria.
The more powerful type (d) criteria such as Closeness and a
minimal structure constraint are also available in this system.
In fact, both of the latter are more or less automatic conse-
quences of superparsing given that the human parser is a least-
effort device (Inoue & Fodor, 1995).  For instance, the Minimal
Attachment parsing strategy entails that superparsing will
prefer simple, compact trees over more complex ones; the
learning device inherits this and so favor grammars that assign
simpler structures.  A conservative policy of staying close to
the previous grammar will result if, as is natural, the parser
makes the effort of changing paramete r settings in Gc only
when it is forced to do so to avoid parse failure.  Again, parser
preference translates into learner preference.  In much the same
way, frequency sensitivity in parsing could lead to frequency-
sensitive  learning (e.g. Charniak, 1993).  

The exact mix of these various criteria remains to be estab-
lished (e.g., Minimal Attachment versus minimal resetting of
parameters).  The supergrammar model allows various policies
for resolving conflicts; which of these is adopted by human
learners is an empirical question.  To the extent that these
criteria help the learner select an optimal grammar from among
those that license  s, the fact that they can be applied by a
superparsing learner means that its efficiency gain compared
with pre-parse selection criteria is even greater than was
calculated above (Table 1).  However, exact benefits are not
easily quantified. The effects of Closeness and other such
rankings are complex, and are best assessed by simulation
studies.  This awaits future research.

Limitations of Superparsing
Does superparsing as a means of parameter setting carry
significant costs to offset these advantages, so that no net gain
in efficiency results?  This appears not to be so.

As noted, the parsing routines need not be unusually power-
ful.  The mechanism can be the  normal human sentence pars-
ing device, which clearly must be present in chi ldren for
comprehension of sentences already licensed by the  current
grammar.  Thus, all that is special about the superparser is that

it applies the supergrammar, augmented with all possible
parameter values.  This could exact a heavy cost in on-line
processing due to the massive ambiguity of sentences in
relation to the supergrammar, far greater in many cases than
ambiguity levels relative to a settled adult grammar.  How-
ever, the added cost of ambiguity is negligible as long as no
attempt is made to compute all analyses of a sentence.  For
a serial parser, alternative parses are evaluated only momen-
tarily as each new word is encountered and attached into the
parse tree.  They are not pursued through the sentence, and
are not multiplicative.  As soon as one of the alternatives has
been chosen, the others can be forgotten.  And arguably, even
the selection process is cost-free in a least-effort system, since
it consists of adopting the first (simplest) attachment option
that is computed (Frazier & Fodor, 1978; Lewis, 1999).  The
only difficult analyses will be (i) those the human sentence
parser has trouble with even when the grammar is settled, e.g.,
center-embedded constructions; and (ii) analyses which are
not complex in themselves but are systematically masked by
more attractive analyses allowed by the supergrammar.
Grammar guessing models without superparsing would suffer
from (i), but not from (ii).  The incidence of such cases is not
known.  They could lead to false negative  reports from the
parser to the learner, indicating wrongly that s is not licensed
by the grammar being tested.  For examples and discussion
see Fodor (1998b).

A requirement for smooth functioning of the superparsing
routine is that the parameter values defined by UG are such
that they can be added into a natural  language grammar
without altering its basic character.  The competing values
of one parameter must be able to co-exist in the same gram-
mar without internal contradiction.  And the parameter values
temporarily added into Gc to create the supergrammar should
be no harder to access and use  on-line than other elements of
natural language grammars.  This may preclude  any kind of
precompiling process by which the combination of Gc and the
added parameter values is reformulated for convenience in
parsing, since the computational costs of repeated compiling
would be added into the workload of the superparser.  For
some kinds of parameters (e.g., Subjacency applies at Surface
Structure or at Logical Form; Huang, 1981/82) these condi-
tions are hard to meet.  But a variety of current linguistic
theories conceive of parameter values as fragments of tree
structure (see Fodor, 1998c), and these 'treelets' do meet the
needs of superparsing. They can be directly added into a
normal grammar to create another perfectly normal grammar,
only slightly more complex than the original, and yet incorpo-
rating all the structural options that UG permits.

The one limitation of superparsing that is unavoidable is
that it delivers only one structural analysis for each sentence.
Because of the ban on excessive processing, it is impossible
for the parser to present the learning component with all
analyses for s, to compare and evaluate in order to make the
best possible guess.  The process of selecting one of the
licensing grammars is piecemeal and order-dependent as each
ambiguity must be resolved as it arises on-line.  Interestingly,
this appears to do relatively little damage, because there
seems to be an excellent fit between the choices made on-line
by the human parser and the choices that  a well-designed
learning device would be expected to favor: the minimization
of derivational complexity, and the minimization of grammar

5In a serial parse, the selected resolution of an ambiguity may prove to
be incorrect, by failing on subsequent words of the sentence.  In a
garden path situation such as this the superparser would engage in
reanalysis procedures just as the human parser normally does in the
case of a garden path.



revision.  Whether this is merely a coincidence is not clear, but
at any rate it is fortunate for superparsing as a method for
parametric decoding.

Summary and Conclusions
A start has been made here on quantifying the efficiency
advantage of a learning device which has the abi lity to read off
a set of parameter values for licensing a sentence, in the  course
of parsing that sentence in the normal way for comprehension.
The superparsing approach was developed originally for a
different purpose.  It was designed to provide a feasible ambi-
guity detection system, so that all parametrica lly ambiguous
input could be discarded.  This permitted development of a
non-guessing learning routine, capable of error-free parameter
setting based exclusively on unambiguous items in the input
sample (Fodor, 1998a).  Whether this is the best research goal,
either for modelling human learning or for engineering appli-
cations, remains to be seen.  The error-free lea rner has the
advantage that it never  has to re-set a parameter.  Also, once
it has set a parameter it can ignore  the alternative value of that
parameter thereafter, so the size of the domain to be searched
for Gt shrinks as learning proceeds.  It is an empirical issue
whether these benefits balance the need to discard all ambigu-
ous sentences in the input sample.  It is therefore of interest,
as we have shown here, that superparsing can also make a
useful contribution to a grammar guessing routine.

To the extent that the input sample does carry parametric
information, superparsing allows the learner to exploit it.
Despite its modest consumption of resources, and despite its
practical inability to list all parametric analyses of a sentence,
the superparser nevertheless extracts from a sentence all the
definitive parametric information it contains.  If a sentence is
compatible with only one grammar in the whole domain, the
superparser will identify that grammar and the learning compo-
nent will adopt it.  If a sentence is less informative, e.g., is
compatible with a thousand grammars, the superparser will
identify one of the thousand.  (Which one of the thousand it
identifies depends on which ambiguity resolution criteria it
applies on-line.)  All parameter values expressed unambigu-
ously by a sentence will be set correctly by the time it has been
parsed.  The values of the other paramete rs can only be
guessed.  They will be left unchanged from previous learning
where possible; otherwise they will be changed to some combi-
nation of values which licenses s.

The superparsing learner is quite undemanding about the
nature of its input.  For example, it does not require a language
to contain unambiguous triggers for all of its pa rameter va lues.
A simple random grammar guessing learner also needs no
unambiguous triggers, but that is because, as noted above, it
gains hardly more from unambiguous than from ambiguous
input.  By contrast, a non-guessing error-free learner is very
choosy; it needs an unambiguous trigger for each parameter,
and moreover it needs some of these to be fully unambiguous
(i.e., unambiguous with respect to all parameters they express).
The superparsing learner has the dual virtues that it can use the
information in fully unambiguous triggers when they are
present, but it can also make progress when input sentences are
ambiguous with respect to many (or even all) of the parameters
they express. Thus it is robust as well as efficient.
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