Triggering, Hill-Climbing and Can a stochastic trigger-based learner

William G. Sakas City University Graduate

the Conservative Learner: afford Greediness as a constraint?

and Janet Dean Fodor of New York Center

Goals of Language Learning Theory: (0)

- a learning system that is guaranteed to converge on the target grammar
- and do so in polynomial time (= number of input sentences)

Background

Theory of grammars:

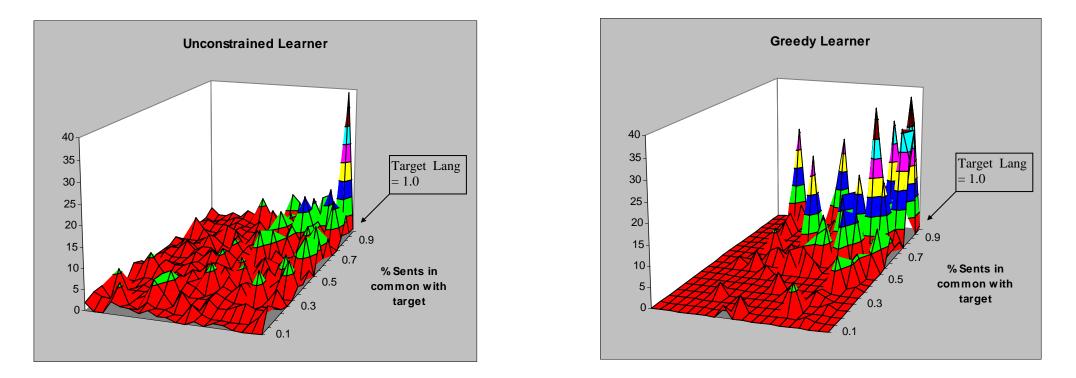
- Universal principles and (binary) parameters
- Noiseless input (no ungrammatical sentences)
- No memory for past inputs or grammars (no batch processing)

Mathematical perspective:

• the learning algorithm may be viewed as a Markov process, in which each state represents a language licensed by a grammar (see, for example, Berwick & Niyogi, 1996)

The Greediness Constraint

The learner shifts to a new grammar only if the new grammar licenses the current input (see, for example, Gibson & Wexler – 1994)


Unconstrained Error Driven Learner (**UED Learner**):

a stochastic learner that shifts to a new grammar (randomly selected) if and only if the current grammar does not license the current input

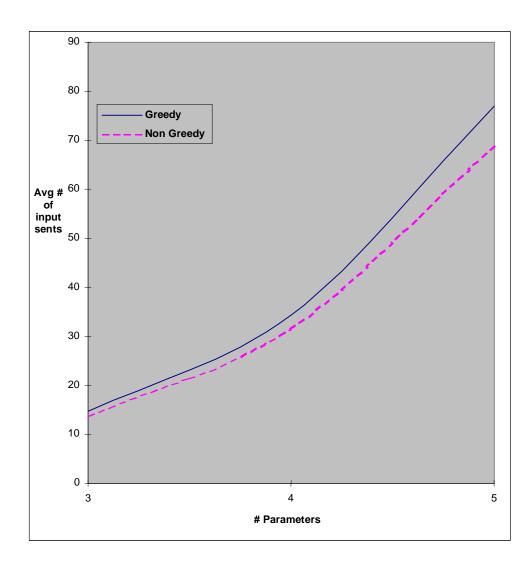
Our Claims

- 1) Adding the Greediness Constraint to an Unconstrained Error Driven Learner can only increase the time to convergence – regardless of the language space.
- 2) The UED learner requires a number of inputs that is exponential in the number of parameters, and is therefore implausible as a model for human learning.
- 3) Therefore, the UED with the Greediness constraint is exponential and implausible.

Greediness biases the learner's search (4) **towards the area around the target.**

The X-Y plane depicts language states of increasing similarity with the target language. The vertical Z axis depicts the number of inputs the learner consumes while in state (x,y). The graphs reflect data from one representative simulation trial.

The Paradox of Greediness


- **Perception:** Over time, Greediness will increase the *probability* that the current grammar *is* the target grammar
- **Reality:** Over time, Greediness increases the *similarity* of the current grammar* *to* the target grammar

But (perhaps counter-intuitively) -

As the similarity between the current grammar and the target grammar increases, the learner is less likely to encounter an input trigger that will shift it to the target.

^{*}If there is not a smoothness relationship between grammars and languages, then technically Greediness favors similarity of languages

Simulation of performance with and without Greediness:

Experiment:

1K trials on each of 1K randomly generated language spaces3, 4, or 5 parameters in each space12 sentences in each target language1-11 sentences in each non-target language

 $[\mathbf{6}]$

The non-greedy learner consumes less sentences than the greedy one - at least for up to 5 parameters.

BUT – only small spaces can be explored practicably in this way.

Informal Summary of Argument (7)

- 1) Start with a non-greedy learner that, on average, attains the target with N inputs.
- 2) Add Greediness. The effect is to decrease the frequency of shifting from one grammar to another.
- 3) This conservatism directs the search, but does so at the cost of shifting less frequently.
- 4) The benefit gained by Greediness does not overcome the cost of less frequent shifting.

The learner with Greediness attains the target in N + X steps where X depends on the cost of NOT shifting

Outline of Proof:

 π = probability that the learner picks a particular grammar G_i (here π is constant) α_i = probability that the current input can be parsed by G_i

Let U = the transient sub-matrix of the transition matrix that describes the UED Learner. Probability of a shift from G_i to G_{j_i} for the UED = P ($G_{i}G_j$) = $\pi(1-\alpha_i)$

Let K = a matrix, which when added to U, describes Greediness applied to the UED learner. $k_{ij} = probability$ that the current input can be not be parsed by either G_i or G_j . times π (note that $k_{ij} = k_{ji}$)

Probability of a shift from G_i to G_{j} for the Greedy learner = probability that the current input *s* can be parsed by G_j given that *s* cannot be parsed by $G_i = P(G_i G_j) = \pi(1-\alpha_i) - k_{ij}$

U	G_0	G_1	G_2	K	G_0	G_1	G_2	_1	U+K	G_0	G_1	G_2
G_0	α_0	$\pi(1-\alpha_0)$	$\pi(1-\alpha_0)$	G_0	$k_{01} + k_{02}$	-k ₀₁	-k ₀₂		G_0	$\alpha_0 + k_{01} + k_{02}$	$\pi(1-\alpha_0)-k_{01}$	$\pi(1-\alpha_0)-k_{02}$
G_1	$\pi(1-\alpha_1)$	α_1	$\pi(1-\alpha_1)$	\mathbf{G}_1	-k ₀₁	$k_{01} + k_{12}$	-k ₁₂		G_1	$\pi(1-\alpha_1)-k_{01}$	$\alpha_1 + k_{01} + k_{12}$	$\pi(1-\alpha_1)-k_{12}$
G_2	$\pi(1-\alpha_2)$	$\pi(1-\alpha_2)$	α_2	G_2	-k ₀₂	- k ₁₂	$k_{02} + k_{12}$		G ₂	$\pi(1-\alpha_2)-k_{02}$	$\pi(1-\alpha_2)-k_{12}$	$\alpha_2 + k_{02} + k_{12}$

Define $|\mathbf{X}|_{\Sigma}$ as the sum of all the elements of matrix X.

(9)

If the UED takes a shorter time to converge on average than the Greedy Learner, then: | fundamental matrix of UED $|_{\Sigma} \leq$ | fundamental matrix of UED+Greediness $|_{\Sigma}$. or,

 $| (\mathbf{I}-\mathbf{U})' = \mathbf{I} + \mathbf{U} + \mathbf{U}^2 + \mathbf{U}^3 + \mathbf{U}^4 \dots |_{\Sigma} \le | (\mathbf{I}-(\mathbf{U}+\mathbf{K}))' = \mathbf{I} + (\mathbf{U}+\mathbf{K}) + (\mathbf{U}+\mathbf{K})^2 + (\mathbf{U}+\mathbf{K})^3 \dots |_{\Sigma}$

expanding the right hand side, and rearranging the terms we have: $|I+U+U^2+U^3+U^4+\dots$, $|_{\Sigma} \leq |I+U+U^2+\dots+K+UK+KU+K^2+UUK+UKU+\dots$, $|_{\Sigma}$

applying the fact that $|X+Y|_{\Sigma} = |X|_{\Sigma} + |Y|_{\Sigma}$ we're left with: $|I|_{\Sigma} + |U|_{\Sigma} + |U^2|_{\Sigma} + \dots \leq |I|_{\Sigma} + |U|_{\Sigma} + |U^2|_{\Sigma} + \dots + |UK|_{\Sigma} + |KU|_{\Sigma} + |UUK|_{\Sigma} + |UKU|_{\Sigma} + |K^2|_{\Sigma} \dots$

this is obviously true if the $\|_{\Sigma}$ of each of the terms that involves a K is >= 0.

We show that $|KX|_{\Sigma} = |XK|_{\Sigma} = |K^{i}|_{\Sigma} = 0$, and that $|UKU|_{\Sigma}$ is the sum of terms of the form $k_{i}(r_{u}-r_{v})(c_{u}-c_{v})$, where k_{i} is positive and $r_{x} = \text{sum of row } x$ of U, and $c_{x} = \text{sum of column } x$ of U. Since $r_{u}-r_{v} \le 0 \Leftrightarrow c_{u}-c_{v} \le 0$, for any row sum and column sum of U - each term is positive. And finally by induction, that the $||_{\Sigma}$ of the all terms bracketed by U on the left and right are positive.

Performance of the UED Learner(1without Greediness is Exponential


- Assume that all languages have a certain percentage of sentences in common with the target language call this percentage α
- Assume n parameters; 2^n languages. From any non-target state the probability of attaining the target is: the probability that the current input is not licensed by the current grammar times the probability of picking the target state: $(1-\alpha) \cdot 1/(2^n - 1)$
- Thus, on average, the number of inputs required is $(2^n 1)/(1-\alpha)$
- Note that the number of inputs required is exponential in the number of parameters.

Conclusions:

(11)

- Greediness carries a processing cost: the learner must parse each novel sentence twice
- Greediness can only increase the number of sentences consumed by the UED Learner before convergence
- Greediness does not mitigate the inefficiency of error driven random walk learning

Future Research

• Are there language learning systems for which greediness is beneficial? For example:

Genetic Algorithms (Clark) Neural Networks (Elman) Cue-Based Learners (Lightfoot, Bertolo et al) Structural Trigger Learners (Fodor)

• Do the consequences of Greediness depend on the content of what is learned or the mechanism of learning?