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1.	Introduction 
	
In the first few years of life, a child's language undergoes tremendous changes.  While it  
is a primary task for the student of language acquisition to document these changes, a 
mere description of child language, however accurate or insightful, cannot be regarded as	
adequate. A complete  theory of language acquisition must also include a detailed 
account of how these changes take place, that is, the mechanism of language learning.  
The study of this mechanism must take into account contributions from both the internal  
knowledge of language, innate or otherwise, and the external linguistic experience, which 
determines the outcome of learning. The goal of language acquisition research is to 
establish the right combination of the theory of grammar and the theory of learning such 
that the development of language can be successfully accounted for.	
	
Viewed in this light, the Principles-and-Parameters (P&P) framework (Chomsky 1981) 
represented a radical shift of paradigm for both the theory of grammar and the theory of 
learning. First, as more and more languages were subjected to generative studies, a 
number of universal principles emerged, ones which are not restricted to specific 
constructions or particular languages. Second, a great variety of sentence structures can 
be efficiently described by a small number of parameters; different grammars are 
instantiations of different operational choices in a universal engine of sentence building, 
much like configuring computer software. The principles, which are putatively 	
innate and universal, are not  learned,  and can be expected to be operative in (early) child  
language; this opens up  a wealth of topics for empirical research. On the other hand, the 
parameter values, which vary cross-linguistically, must be learned on the basis of specific 	
linguistic evidence, which also can be quantified and evaluated empirically (Yang 2002).  
Thus, the commonalities and differences in children's acquisition of specific languages 
receive a principled and unified interpretation.  In the original conception, parameters are 
like data compression devices, designed to be anchor points for dividing up the linguistic 
space: the complex interactions among them would provide coverage for a vast array of 
linguistic data—more “facts” captured than the number of parameters, so to speak—such 
that the determination of the parameter values would amount to a simplification of the 
learning task. This conceptual notion of parameters goes well with the perspective of 
machine learning and statistical inference, where plausible learnability can only be 
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achieved by constraining the hypothesis space within some finite dimensions (Valiant 
1984, Vapnik 1995, see Niyogi 2006 for review).  Moreover, if the number of parameters 
is finite, then there is only a finite--albeit large, perhaps--number of grammars that forms 
the  child's learning space; this sidesteps the well-known problem of inductive 
indeterminacy in an infinite hypothesis space associated with phrase structure rules (Gold 
1967, Chomsky 1981). 	
	
That is not to say that the problem of parameter setting, and that of language acquisition, 
is resolved. Many commentators have remarked on the sheer number of grammars that 
are made possible by the combination of parameter values, which will surely defeat a 
brute-force exhaustive search (Berwick & Niyogi 1996). But the number of grammars 
itself is not the core issue; what determines the complexity of learning is the structure of 
the parameter space (Sakas, 2000). Even a space of infinitely many hypotheses can be 
easily learned if it is “smooth” so as to allow for efficient search.1 For instance, there are 
infinitely many linear functions in a 2-D space but a handful of points drawn from it 
suffices to establish the slope and intercept of the target linear function, which is after all 
the process of linear regression. In this sense, the space of linear functions is structurally 
simple such that the target hypothesis can be effectively established.	
	
In the first two decades of the P&P framework, there was considerable effort devoted to 
the study of parameter setting and its implications on language acquisition (Berwick 
1985,  Roeper 1987, Kapur, 1993, Gibson & Wexler 1994, Fodor 1998a, 1998b, Dresher 
1999, Sakas & Fodor 2001, Yang 2002, Fodor & Sakas, 2004). Most of these learning 
models, however, operate on toy domains although even a simple three-parameter system 
studied by Gibson & Wexler (1994) proved much harder to learn than one might have 
expected (Berwick & Niyogi 1996). At the same time, the past fifteen years or so have 
seen the parameter falling on hard times as alternative conceptions of how to encode 
cross-linguistic differences have begun to (re)emerge (Newmeyer 2004, Culicover & 
Jackendoff 2005).2 It is certainly logically possible to recast the fact of language variation 
without appealing to syntactic parameters; we can point to variation in the lexicon, 
variation in the functional projections, features, feature strengths, feature bundles, etc. to 
“externalize” the parametric system to interface conditions, presumably out of the 
syntactic system proper.  But it is also important to realize that such a move does not 
fundamentally change the nature of acquisition problem: the learner still has to locate her 
target grammar in the space of finite choices with a reasonable amount of data within a 
reasonable amount of time.  And to the extent that syntactic acquisition can be viewed as 
																																																								
1	By	“smooth”	here	we	mean	any	structure	of	the	hypothesis	space	that	allows	for	efficient	search.	
Smoothness	is	sometimes	used	as	a	more	technical	term	to	mean	a	correlation	between	the	similarity	
of	grammars	and	the	languages	they	generate	(Sakas,	2000;	Berwick	&	Niyogi,	2996).	A	domain	in	
which	there	is	such	a	strong	correlation	is	one	type	of	smooth	domain	in	the	current	sense	of	the	
term.	
2	Although	some	of	these	challenges	are	mistakenly	directed	toward	the	parameters,	on	our	view.	For	
instance,	Newmeyer	(2004)	is	concerned	by	the	fact	that	the	parameter	values	of	a	language	may	
have	exceptions	for	certain	lexical	items	or	constructions.	But	that	observation	merely	calls	for	a	
theory	of	learning	that	can	identify	and	tolerate	exceptions	(e.g.,	Yang	2005,	2016):	a	rule-based	
approach	will	also	have	exceptions	and	abandoning	parameters	does	not	seem	to	change	the	nature	
of	the	problem.	
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a search among a constrained set of grammatical possibilities, as reviewed above, the 
Minimalist—and indeed, non-Minimalist—alternatives to parameters ought to provide 
similar empirical coverage. 	
	
We still believe that the parameters are the best solution for the problem of language 
acquisition but the value and benefit of this approach must be demonstrated. In this paper, 
we aim to move beyond toy grammars and provide a large-scale study of parameter 
setting in a linguistically complex domain constructed by the research group at The 
Graduate Center and Hunter College of the City University of New York CUNY-CoLAG 
(Sakas and Fodor, 2011, 2012). Section 2 presents several prominent parameter setting 
models, how how they deal with the problem of parametric ambiguity: multiple 
collections of parameter values can license the same input sentence. These models 
include the Triggering Learning Algorithm of Gibson & Wexler (1994), the Structural 
Triggers Learner of Fodor (1998a) and Sakas and Fodor (2004), and the probabilistic 
variational learning model of Yang (2002).  Section 3 provides a concise description of 
the parameter domain which has implemented 13 syntactic parameters that are largely 
used for encoding cross-linguistic word order variation. In Section 4 we show that with 
the exception of the trigger model of Gibson & Wexler, these learners are able to 
navigate a complex syntactic parameter space and arrive at the target grammar 
consuming a reasonable number of input sentences. These findings suggest that 
parameters, and learners that set parameters to their correct values, together form a 
compelling explanation of how human children learn language.     	

2.	The	Learning	Models	and	the	Problem	of	Ambiguity	
	
The Triggering Learning Algorithm or TLA (Gibson & Wexler, 1994) is appealingly 
simple. The learner tests the current input sentence against its current grammar 
hypothesis Gh if Gh licenses the input the learner does nothing. If Gh doesn’t licenses the 
input the TLA randomly picks one parameter to toggle its value (i.e., from 0 to 1 or from 
1 to 0) which creates a new hypothesis Gw that differs from Gh by only one parameter 
value. If Gw licenses the input then Gw becomes the current hypothesis, otherwise Gh 
remains the current hypothesis. The learner then waits for a new input. 	
	
The TLA embodies some (apparently) psychologically desirable features. Changing only 
one parameter (dubbed the Single Value Constraint by G&W), combined with changing 
the hypothesized grammar only in the event that the new grammar can parse the input 
(Greediness) promotes conservatism jumping between radically different grammars is 
prohibited. The TLA also requires very little in the way of computational resources. It 
requires no memory for past sentences or grammars, and at most two grammars are 
applied to a single input sentence. 	
	
The Structural Triggers Learner or STL (Fodor 1998a, 1998b, Sakas and Fodor 2001, 
Fodor and Sakas, 2004, Sakas and Fodor, 2012 ) is actually a family of learners that 
makes use of structural information gleaned from input by the parser. In the STL model, 
parameters are not 1’s or 0’s but rather small ingredients of tree structure called treelets. 
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A treelet contains what is minimally necessary to linguistically define a parameter value. 
For example, a treelet for the 1 (final) value for the Subject Position parameter might be: 
S is the right sister of IBAR, for the 0 (initial) value: S is the left sister of IBAR. UG 
provides a treelet for every natural language parameter value. There is no meaningful 
distinction between parameter values and treelets: a treelet is a parameter value. The 
supergrammar (Fodor, 1998a) is the pool of all UG-supplied treelets together with 
universal principles. A single grammar (or grammar hypothesis) is a proper subset of the 
entire range of UG-supplied treelets (parameter values)—in the models being considered 
here a grammar consists of one treelet per parameter.	
	
The parser applies the supergrammar to every sentence encountered. Learning consists of 
the strategies used in choosing which parametric treelets to employ during a 
supergrammar parse, and which to retain as part of the learner’s grammar hypothesis—in 
other words which parameter values to change (if any) during the course of learning. The 
STL variant employed in this work is stochastic. Given a choice between a “0 treelet” and 
a “1 treelet” for a parameter—either of which would result in a complete parse tree—the 
learner picks one at random without bias, this is called the Any Parse STL in Fodor and 
Sakas (2004).3 	
	
Like the STL, the Variational Learner or VL (Yang, 2002) is actually a family of learners 
that combines domain general, probabilistic learning with UG parameters. All VL 
variants maintain a vector of real valued weights (0 to 1), each weight is associated with a 
parameter. The weights are used to guide grammar hypothesis selection during the course 
of learning. If a weight for parameter Pi is greater than .5, the next grammar hypothesis is 
more likely to have Pi set to 1, if the weight is less than .5 the next grammar hypothesis is 
more likely to have Pi set to 0. After each input sentence is consumed by the learner, the 
weights are updated based on a ‘can parse’/’can’t parse result after the learner applies the 
current grammar hypothesis to the input sentence. The weights effectively serve as a form 
of memory for which parameter values have worked best on past input sentences. 	
	
As Yang describes it (2002), the learner is effectively putting the grammars in 
competition with each other trying to best match the observed linguistic data. The family 
of VLs differ by the method used to update weights after each input sentence. The VL 
variant that was used in the simulations reported here is the “reward only” learner (Yang, 
2012). If the current hypothesis cannot license the current input sentence, then the learner 
does nothing. If the current grammar hypothesis can parse the current input sentence, 
then nudge the weights up for all parameters with a 1 value, and nudge the weights down 
for all the 0 values.4 Note that under this scheme, it is possible that a wrong parameter 
value gets rewarded as a free-rider if the overall grammar, probabilistically chosen based 
on the parameter weights, successfully analyzes an input sentence. The expectation is that 
in the long run, the parameters will gradually drift toward the target values, especially 
when the parameter space is structured favorably in a sense to be made precise. 	
																																																								
3 There are several other stochastic heuristics employed in this study. The family of stochastic STL models is referred 
to as the Guessing-STLs. 	
4 The amount that the weights are changed follow the LR-P scheme (Bush & Mosteller, 1955); see Yang (2002) for 
details. 	
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It is interesting to observe how these learning models handle the problem of ambiguity. 
The ambiguity problem is caused by the complex interactions of the parameters: such that 
there are sentences that licensed by extensions of multiple grammars (i.e., combinations 
of parameter values).  When such sentences appear the input, the learner will have 
multiple ways of updating their grammar hypothesis, and the challenge is to identify the 
correct grammar, or the path to the correct grammar, without being led astray. We now 
consider how the three learning models address the problem of ambiguity. 	
	
The TLA essentially ignores the ambiguity problem. If an ambiguous sentence appears, 
and there are multiple grammars that are one parameter value away from the current one 
that can analyze it, the TLA might select one randomly. Note that there is no guarantee 
that any of the compatible grammars will be chosen, because the TLA tries out only one 
new grammar upon failure with its current grammar hypothesis. Decisions are therefore 
strictly local: even if there is a path of grammars that eventually leads to the target, there 
is no guarantee that such a path will be taken. Indeed, the TLA learner often heads down 
the wrong path, resulting in severe convergence problems (Berwick and Niyogi 1996). 	
	
The STL and the variational learning (VL) model, by contrast, hope to sidestep the 
ambiguity problem if parameters have unambiguous triggers (Fodor, 1998, Sakas & 
Fodor, 2012), or signatures (Yang 2002).5 Signatures or unambiguous triggers for a 
parameter are sentences that are analyzable only if that parameter takes on the correct 
value of the target language. Signatures, or unambiguous triggers we take to mean an 
abstract characterization of a linguistic phenomenon visible in the sentences (e.g., a non-
adjacent preposition and its complement).  	
	
Strictly speaking, the VL model does not require the existence of signatures. It provably 
converges onto the target grammar but may takes an intractable amount of time in the 
worst case (Straus 2008). However, if parameters have signatures, then efficient learning 
becomes achievable. In particular,  if parameters have signatures, then over time the 
probabilities of the parameters will gradually drift toward the target value. Furthermore, 
even if not all parameters have signatures, learning can still succeed if the parameters are 
conditioned (Dresher & Kaye, 1990; Sakas & Fodor, 2012). For instance, consider the 
setting of the V2 and OV/VO parameters for a language like German. Unless the OV/VO 
parameter is set, there is no single sentence that can set V2 to the positive value. 
However, once the OV/VO parameter has been set to the head-initial setting of VO, 
presumably based on patterns such as “participle object”, and the subject has been 
determined to reside in the Specifier position of TP (either as a universal property or has 
been determined as such by the language-particular data), then patterns such as OVS 
becomes unambiguous evidence for the V2 parameter. The net effect is that the 
probability of the V2 parameter may be wandering around rather aimlessly, but it will 
begin a much more deterministic march toward the target value as the probability of the 
OV/VO is closer and closer to the target. The effectiveness of the variational learning 

																																																								
5	Gibson	and	Wexler’s	(1994)	global	trigger	is	identical	to	an	unambiguous	trigger	or	a	signature,	see	
Sakas	&	Fodor	(2012)	for	extensive	discussion	of	triggers	and	workable	definitions.		
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model, then, is critically dependent on the smoothness of the parameter domain: Do 
all/most parameters have signatures or conditioned signatures?	
	
Deterministic STL variants ensure that the ambiguity problem does not arise by using the 
parser to identify unambiguous triggers. The basic idea is that any serial deterministic 
parser will be equipped to recognize a choice point during a parse. As the parse tree for 
the input sentence is constructed, if the current grammar fails, the deterministic STL 
adopts only those parameter value treelets that are not involved in any choice points 
(Fodor, 1998a). The most sophisticated deterministic STL at this writing makes use of 
conditioned parameters, both single-parameter and between-parameter defaults and is 
described in Sakas & Fodor (2012). The Any Parse STL used in this study is 
nondeterministic. If the current grammar fails, and a choice point is encountered, adopt a 
parameter value treelet randomly as long as it leads to a complete parse tree. The Any 
Parse STL was chosen because in some sense it is the weakest and least informed STL 
variant on how to deal with ambiguity. That said, it performs with surprising efficiency. 
This is due to the fact that all STL models perform decoding: STL learners know which 
parameters need to be reset in order for a parse to go through. This means that for 
parameters that have unambiguous triggers the learner will never have cause to change 
that parameter which causes an exponential reduction in the grammar space that needs to 
be searched. So in contrast to the VL model, the STL model can focus its efforts on  
parameters lacking triggers. For further discussion see Sakas (in press).6 	

3.	The	Language	Domain	
 	
The following experiments were run on an artificial language domain created by the 
Computational Language Acquisition Group (CoLAG) at the City University of New 
York (CUNY) and consists of 3,072 languages, together with the parameterized 
grammars that generate them and syntactic derivations for all the word-order patterns that 
make up the languages in the domain. The 13 binary parameters that generate the CoLAG 
languages embody familiar syntactic differences between natural languages. They are 
listed in Table 1, with their values.	
	

Parameter name	 0 / 1 value	 English 
settings	

Subject Position 	 initial / final	 0	
Headedness in IP, 
NegP, VP, PP 	 final / initial	 0	

Headedness in CP 	 initial / final	 0	
Optional Topic 	 obligatory / optional	 1	
Null Subject 	 no null subject / null subject	 0	
Null Topic 	 no null topic / null topic	 0	

																																																								
6	This	study	assumes	there	no	noise	in	the	input	stream.	Noise	can	severely	mitigate	the	STL’s	
efficiency	(cf.,	Crother,	Fodor	&	Sakas,	2004)	whereas	the	VL	is	likely	to	be	more	robust	in	the	face	of	
noise.		The	effect	of	noise	on	learnability	for	parameter	setting	models	warrants	further	inquiry.		
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Wh-Movement 	 no Wh-movement /  
Wh-movement	 1	

Preposition Stranding 	 no stranding / stranding	 1	
Topic Marking 	 no marking / marking	 0	
VtoI Movement 	 no movement / movement	 0	
ItoC Movement 	 no movement / movement	 0	
Affix Hopping 	 no hopping / hopping	 1	
Q-Inversion: 
ItoC in questions 	 no inversion / inversion	 1	

	
Table 1: Parameters, their default values, and most English-like settings of the 13 parameters 

that were used to generate the 3,072 languages that make up the CUNY CoLAG language 
domain.  	
	

There are constraints on some parameters, e.g., languages are forbidden to have both Null 
Subject and Null Topic set to their positive values which is why there are 3,072 
languages rather than 213 (8,192) which would ensue without parameter constraints. A 
CoLAG grammar is a string of thirteen 1’s and 0’s corresponding to the thirteen 
parameters. CoLAG’s version of ‘English’ would be: 1100011001000, which also the 
binary representation of  the number 611.7	

CoLAG languages consist of  word-order patterns that encode sentences with tokens 
that denote the grammatical roles of words and complex phrases, e.g., subject (S), direct 
object (O1), indirect object (O2), main verb (V), auxiliary verb (Aux), adverb (Adv), 
preposition (P), etc. An example pattern is S Aux V O1 which corresponds to the English 
sentence: The little girl can make a paper airplane. There are also tokens for topic and 
question markers for use when a grammar specifies overt topicalization or question 
marking. The languages consist of patterns with only a single sentential clause (degree-0) 
and since there is no (other) recursion the languages are finite; on average each language 
consists of 789 sentence patterns.	

Each word-order pattern has two or more syntactic derivations in the form of fully 
specified X-bar style trees using GB-style phrase markers. A slash feature is borrowed 
from HPSG to encode movement as local dependencies. Other features include +NULL 
for non-audible tokens (e.g. S[+NULL] represents a null subject pro), +TOPIC to 
represent a topicalized token, +WH to denote wh-words (e.g., who, what, where), 
illocutionary (ILLOC) features, etc. 	

Figure 1, replicated from Sakas & Fodor (2012), depicts two different derivations for 
the CoLAG pattern S Aux Verb Adv.8	
	
	

																																																								
7	Although	we	use	1’s	and	0’s	for	notational	convenience,	how	parameter	values	are	linguistically	
manifested	can	vary	from	model	to	model	(e.g.,	STL	‘treelets’	above)	and	between	formalisms	(e.g.,	
GB	vs.	MP).	
8 Note that unlike Sakas & Fodor, we omit tense and illocutionary force features for simplicity of presentation.	
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FIGURE 1 Two fully specified CoLAG tree structures for S Aux Verb Adv. These trees 
are from languages that differ with respect to two relevant parameters. The tree depicted 
in Figure 1a is generated by a grammar with the Subject-initial value of the Subject 
Position parameter, and the No Movement value of the ItoC Movement parameter. The 
tree in Figure 1b is generated by a grammar with the Subject-final value of the Subject 
Position parameter and the Obligatory Movement value of the ItoC Movement 
parameter. 	

This is an illustration of parametric ambiguity where different (relevant) parameter 
settings license the same sentence. The CoLAG domain has a substantial amount of 
ambiguity. As one measure, on average, each CoLAG sentence pattern can be licensed by 
50 grammars. There are a total of 48,077 distinct sentence patterns in the CoLAG domain 
(across all languages), and 93,768 distinct syntactic trees. Figure 1 displays only two of 
the twelve distinct syntactic derivations of the sentence pattern S Aux Verb Adv.9 As 
discussed below, parametric ambiguity is a significant obstacle all parameter setting 
models must overcome to succeed in acquiring the correct target grammar.	

The CoLAG domain allows us to pursue a wide range of language learnability 
research which would be unmanageable in the domain of natural languages. The domain 
was designed to include many phenomena from the learnability literature as possible 
(e.g., subset-superset relations, non independence of parameters, null elements, etc.) 
while staying true to observed cross-linguistic data. That said, decisions had to be made 
in order to bring the domain into existence (e.g., GB formalism, thirteen parameters, etc.). 
All were carefully considered, based on: practicable concerns, embracing as many know 
learnability issues from developmental psycholinguistics as possible, and linguistic 
viability. However, even though the CoLAG domain is the largest domain of its kind with 
which one can systematically pose learnability questions that mirror those of natural 
language, other design decisions might very well change the shape of the learnability 
problems and solutions that arise. Extensive details of the CoLAG domain, and the 
‘supergrammar’ that generated the domain can be found in Sakas & Fodor (2011, 2012). 

																																																								
9 Ambiguity is often conflated with irrelevance. For example, if there is no preposition in a sentence, s,  then the 
Preposition Stranding parameter is irrelevant—it can be set to either value and both corresponding grammars will 
license s with exactly the same tree derivation being constructed. This is quite different from the ambiguity depicted in 
Figure 1 where the tree structures are very different. The first measure given (50 grammars) conflates parametric 
irrelevance and ambiguity, the second (twelve derivations) doesn’t. What constitutes the ‘correct’ measure depends on 
the learner being simulated.	
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The entire domain (and both articles) are available online at: 
http://www.colag.cs.hunter.cuny.edu/downloadables.html.	

4.	The	Simulations.	
	
Overview We ran three experiments. In all three experiments, we simulated three models 
of parameter setting, the Variational Learning (VL) model, The Structural Triggers 
Learner (STL), and the Triggering Learning Algorithm (TLA). They are described below. 	
	
Target grammar and input sentences As the target grammar, we used the CoLAG 
language that was generated by the parameter values most closely aligned with English 
(henceforth Co-English) and the learning models were tested on three different 
distributions of CoLAG sentence patterns. The first distribution was to supply all the 
sentence patterns from Co-English with a uniform distribution: there are 360 sentence 
patterns in Co-English. The second distribution was derived by mapping a parsed corpus 
of child-directed English (Pearl and Sprouse, 2013) to CoLAG tokens (S, Verb, O1, etc.) 
and using frequencies derived from the resulting corpus: there are 81 sentence patterns in 
Co-English that map to at least one sentence pattern in the parsed corpus of child-directed 
English. The third distribution used only the 81 sentence patterns, but with a uniform 
distribution untethered to the frequencies that exist in the parsed corpus.	
	
Learning Trials All three learners are incremental, in the sense that the learning 
algorithms are applied to each independent input sentence, and not across multiple 
sentences (that is, there is no memory for previously encountered sentences).  In all cases 
a single learning trial proceeded by exposing each model to sentence patterns from the 
target language (e.g., Co-English) one at a time. A trial ends when one of the following 
occurs: i) The learner successfully converges to the target grammar, i.e., all 13 
parameters in the domain are set correctly for the target language or a grammar that 
generates a superset of the target language,10 or ii) The learner encounters a maximum 
number of input sentences without setting all 13 parameters correctly, i.e., the learner 
fails to converge on the target before the threshold is reached. The average number of 
sentences consumed over 100 trials is reported as well as a percent succeed/fail rate. A 
failure was reported if the learner consumed 2 million input sentences before converging. 
The learning rate for the VL was fixed at .001.	
	
Results	Table 2 summarizes the results. The TLA does not consistently converge. The 
STL converges very rapidly. The VL model takes on average under half a million 
sentences to converge which is still well within the amount of data that children typically 
receive before the onset of combinatorial speech (Hart & Riesley 1995).11 	
																																																								
10 For mathematical and formal reasons, a target language and its supersets cannot be distinguished in the 
current setting. Also note that for the VL convergence was achieved when all the weights for the 13 
parameters passed a threshold of .98 (the parameter considered set to its 1-value) or .02 (the parameter set 
to its 0-value).	
11		This	is	not	entirely	unproblematic.	Although	most	of	the	parameters	in	the	CoLAG	domain	are	in	
fact	setting	quite	early	on	as	evidenced	by	the	virtual	absence	of	word	order	errors	in	child	language	
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The TLA fails to take advantage of the structure of the CoLAG domain in terms of 
unambiguous triggers (or signatures) which is why it does not reliably converge (Gibson 
and Wexler, 1994, Berwick and Niyogi, 1996, Fodor, 1998a).  That’s not to say that there 
are not other domains in which the TLA might fare better. Sakas (2000), for example, 
presents a “strongly smooth” domain in which the TLA does perform well, however the 
domain is far less linguistically motivated than the current CoLAG domain. 	

Since the STL operates most efficiently when faced with unambiguous triggers we 
conjecture that the 81 CHILDES patterns contain a significantly higher percentage of 
unambiguous triggers than the entire set of 360 CoLAG-licensed Co-English patterns; 
convergence required only 20 sentence patterns for the CHILDES input sample, 
compared with 38 sentences for the full Co-English set of patterns given that the learner 
is equally as likely to see any sentence pattern at any given point of time. However, when 
the presentation of patterns mirrors that of child-directed speech the simulation results 
suggest that those unambiguous signatures are less likely to be encountered by the 
learner; on average the STL consumed 48 sentences to converge in this case.12 Although 
the VL, as discussed above, requires signatures (or conditioned signatures) to converge 
efficiently, it  is less sensitive to their proportion in the input stream due to the gradual 
nature of selecting hypotheses based on weights. In these simulations we used a relatively 
low learning rate (.001) which means that the weights were ‘nudged’ towards a 0- or 1-
value in small increments leveling out convergence times.	

This suggests that the structurally informative cues may be effectively combined with 
a gradual but robust probabilistic learning mechanism. In effect an STL learner supplied 
with activations as in Fodor (1998b) or Yang’s (2002) weights that keeps track of 
successes in the face of ambiguity, would be a learning model that could take advantage 
of both the VL’s smoothness and robustness and the STL’s efficiency. Several versions 
can be envisioned, one might be: decode the input using the current bank of parametric 
treelets and reward those that do not need to be changed. When faced with a choice of 
parametric treelets that can be used by the parser to license the input, choose randomly 
but with probability conforming to the current weight (or activation) of that parameter.	

It is important to note that for either the STL or VL learner, restricting the input 
sample to only those patterns found in CHILDES corpora did not prohibit the learners 
learners from converging. Clearly utterances  encountered in actual child-directed speech 
are sufficient for a child to achieve competency of a full natural language. Likewise the 
CoLAG patterns occurring in child-directed speech are sufficient to ‘trigger’ the 
productivity realized in a full CoLAG language. Though future research needs to identify 
exactly what structural elements of the parameterized CoLAG domain led to these results 

																																																																																																																																																																					
(Brown	1973),	English-learning	children	famous	undergo	a	protracted	stage	(Bloom	1970,	Hyams	
1986,	Valian	1991)	during	which	obligatory	subjects--and	occasionally	objects--are	omitted.	This	
stage	can	be	accounted	for	by	the	probabilistic	use	of	a	topic-drop	grammar,	which	is	gradually	
eliminated	on	the	basis	of	expletive	subjects	as	signature	(e.g.,	there	is	a	cup	on	the	table;	Yang	2002).	
Because	the	CoLAG	domain	does	not	include	expletive	subjects	in	the	sentence	patterns,	this	
phenomenon	cannot	be	captured.		
12	Unpacking	this	innocent	enough	conjecture	will	require	significant	analysis.	Gross	percentages	are	
largely	uninformative	(e.g.,	more	than	95%	of	declarative	sentences	set	the	headedness-in-IP-and-VP	
parameter	in	both	input	samples).	Further	study	is	required	to	pinpoint	the	proportions	of	triggers	
for	specific	parameters,	and	whether	they	are	(or	not)	entangled	with	other	parameters	(Sakas	&	
Fodor,	2012).		
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(see Footnote 12), they stand as the first computational demonstration of the potential 
power of parameters to compactly represent linguistic phenomenon that are robustly 
learnable.  	

 	

	 STL	 % 	 VL	 %	 TLA	 %	

ALL Co-English Patterns	 38	 100	 363,150	 100	 550	 28	

CHILDES patterns: Uniform distribution	 20	 100	 464,551	 100	 486	 93	

CHILDES patterns: Empirical distribution	 48	 100	 457,038	 100	 518	 94	

	
Table 2: Convergence rates in average number of sentence patterns consumed by each learner over 100 trials 
per simulation together with % success rates. Target grammar was Co-English from the CoLAG domain which 
generates 360 patterns. ALL used all 360 patterns, while the data derived from Pearl and Sprouse (2013) 
CHILDES corpora consist of 81 Co-English patterns. 	

5.	Conclusion	
		

Our study of parameter setting can be only regarded as preliminary. Indeed, it will 
always be a work in progress because the landscape of parameters is constantly changing 
as linguists get a better handle of the possibilities and constraints on syntactic variation. 
Nevertheless, we suggest that our results bode well with the parameter-based approach to 
language acquisition. At the minimum, we have shown that the parameters implemented 
in the CoLAG domain, which are drawn from extensive comparative research, appear to 
capture the range of syntactic variation in a compact and easily navigable way. In one 
sense, this should not be surprising: children do acquire an enormously complex 
grammatical system in a few short years, and the hypothesis space in which language 
learning operates must be favorable to learning. At the same time, our results can be 
regarded as a vindication of the parameter-based theory and its empirical reach: we now 
have a plausible answer of what such a favorable hypothesis space looks like. It will 
benefit not only the STL and VL models but all learning models that “modularize” the 
search for the target grammar along the dimensions specified by the parameters.  	

The promise of the parameters, in terms of both descriptive and explanatory adequacy, 
only raises questions about their places in a broad theory of language as a biological 
system. Surely there couldn’t have been piecemeal evolution for each of the parameters 
under current study, and the success of the parameters must ultimately be attributed to 
deeper principles of language and related systems in human cognition—the goals of the 
minimalist program. A deeper understanding of how children learn, which may well 
employ mechanisms not specific to domain but shared across domains and species, will 
continue to shed light on the direction of linguistic research. 	
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