

PSYCHOCOMPUTATIONAL MODELS OF SUBSET
PRINCIPLE COMPLIANCE IN SIMULATED

LANGUAGE LEARNING

By

ARTHUR HOSKEY

A dissertation submitted to the Graduate Faculty in Computer Science in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, The City

University of New York

2008

 ii

© 2008
ARTHUR HOSKEY
All Rights Reserved

 iii

This manuscript has been read and accepted for the
Graduate Faculty in Computer Science in satisfaction of the

dissertation requirement for the degree of Doctor of Philosophy.

 Dr. William Gregory Sakas

April 25, 2008
Date Chair of Examining Committee

 Dr. Theodore Brown

April 25, 2008
Date Executive Officer

Dr. Janet Dean Fodor, Graduate Center

Dr. Virginia Teller, Hunter College

Dr. Damir Ćavar, The University of Zadar
Supervisory Committee

THE CITY UNIVERSITY OF NEW YORK

 iv

Abstract:

Psychocomputational Models of Subset Principle Compliance in Simulated

Language Learning

By

Arthur Hoskey

Advisor: Dr. William Gregory Sakas

Previous research has proposed that any model of language learning should use the

Subset Principle to guide hypothesis selection when the language domain contains at

least two languages such that one is a subset of the other (Gold, 1967; Berwick, 1985;

Manzini & Wexler, 1987; Wexler & Manzini, 1987). Informally, the Subset Principle

states that the learner should select a language that: a) is compatible with the input

data, and, b) does not properly contain any other language that is compatible with the

input data. This thesis puts forth a comprehensive investigation of

psychocomputational models of language learning that abide by the Subset Principle

from both an empirical and theoretical perspective. We intend “psychocomputational

models” to include computational models that are in line with research in

psycholinguistics, developmental psychology and theoretical linguistics (Sakas,

2004). This thesis is divided into three principal areas: 1) an analysis of partial

ordering learners which are given a priori knowledge of subset-superset relationships,

2) a comparison of those partial ordering learners and variants of traditional Gold-

paradigm total ordering (enumeration) learners, and 3) a preliminary investigation

into how the shape of the language domain, in terms of both the partial ordering of

 v

subset-superset relationships and cross-language ambiguity, affects learning

performance of learners that abide by the Subset Principle. Results show that the

partial ordering learners perform best when Subset Principle constraints and parsing

are given equal weight with regards to hypothesis selection. The comparison study

shows that the partial ordering learners outperform the total ordering learners. Finally,

preliminary results stemming from the investigation of language domain shape

indicate that language domains exhibiting greater breadth than depth are more

computationally demanding to learn. Although there exists a number of

computational studies that attempt to address the problems that are introduced when

learning in domains that contain superset languages, this research makes its

contribution by modeling the Subset Principle under assumptions that are

psychologically realistic in terms of the computational workload required of the

learning algorithms under investigation.

 vi

Acknowledgements

First off, I would like to thank my advisor, Dr. William Sakas, for helping to guide

me through the dissertation process. I sought out Dr. Sakas because he was active in

the research community and, more importantly, I knew that he would actually help

me to learn how to do research. He went above and beyond the call of duty. He has

always been generous with both his time and knowledge. His assistance and

encouragement have been invaluable to me and I will always be grateful. I would like

to thank Dr. Janet Dean Fodor for all of her ideas and suggestions as well as editing

throughout the whole process. Thank you to Dr. Virginia Teller for serving on my

committee and for hiring me for my first teaching assignment and to Dr. Damir Ćavar

for finding the time to serve on my committee from half way around the world. I

would also like to thank Dr. Theodore Brown for not giving up on me in the

Computer Science program even when things were slower than we both would have

liked them to be.

I would like to thank my mother Frances and father Gerard for their support

throughout my life. They were always encouraging and they always believed in me.

My mother was my biggest supporter when I struggled through school as a child. She

stuck by me through thick and thin and never wavered. My father was always a model

to me of what a person should strive to be. He was a loving man of high integrity,

intelligence, and an extremely hard worker. There was and there still is no one I

 vii

wanted to be like more than him. I love him and I miss him dearly. I wish he could

have been here to see me finish but I know he would have been very proud.

I would like to thank Dr. Susan Valicenti for her support. I have had many struggles

throughout this process and she always managed to find the right thing to say to me to

help me keep going. Always caring and supportive, I will always be thankful for the

large part that she has played in helping me live life to the fullest.

Many people helped me while growing up and I would like to thank them because I

would not be where I am right now if it weren’t for them. Many thanks to Jonathan

Berent, M.S.W. who was a skilled social worker that helped me to conquer the many

anxieties that I experienced while growing up. He was instrumental in helping me

transform from a scared boy to a confident man. Thanks to my cousins Jimmy and

Kathy as well as my Aunt Dora and my Grandma Rose for their support and

companionship. Thank you to my friend Evan Ziegler, as well as his parents, Arthur

and Elaine, for letting me hang around their house for all of those years. I would like

to send a very special thanks to Michael Kucker. Mr. Kucker taught me as a home

school instructor during high school and helped me through the hardest period in my

life. I struggled socially and academically and he was there for me when I needed it

the most.

I would like to thank Dr. Julia Beltsiou, Amanda Pustam, Evelyn Neunteufel and

Sophie Saint-Just from the dissertation workshop group for all of their support and

 viii

encouragement. Thanks to Dr. Alissa Schamber for her assistance during my final

push to finish my dissertation. Thanks to my fellow Computer Science graduate

students who participated in the comprehensive exam study group. You were

invaluable in helping me get through that exam. Thanks to Mirella Piccone for her

excellent help and support in helping me learn Syntax.

I would like to thank all of my family and friends who have supported me through

this process. My sons, Aidan Hoskey and Gareth Yates, who helped me to have fun

when I needed it. Gareth was also like a second father to Aidan and was a big help in

allowing me to spend time working on my dissertation. Dr. Charles Jeremy Sykes for

supporting me and for helping me to move from being a student to a researcher with a

voice. Tari Lee Sykes for putting up with me bringing my dissertation to family

gatherings and also taking care of Aidan when I needed the time. Thanks to Susan

Sykes for her kind words and encouragement. Susan also spent lots of time taking

care of Aidan, which allowed me flexibility with my job and schoolwork. My friends

Peter Brown, Tracy Brown, Bernadette Smith, Henry Smith, and Michelle Malone

who supported, pushed and encouraged me throughout.

Finally, I would like to thank my fiancée Cindy Parker. The whole dissertation

process has been a marathon for me to say the least and she has been supportive every

step of the way. So many things have happened throughout and she has stayed right

there with me. I have been in and out of jobs (currently out), I took a leave of

absence, I changed advisors (which meant starting research over after a whole year’s

 ix

worth of work) and most importantly she gave birth to our son Aidan. She has proof

read, helped me with statistics and helped me with research ideas when I got stuck.

She has been right there by my side through all of the trials and tribulations. She is

the definition of “Superwoman”. I love her.

 x

Table of Contents

Table of Contents.. x
List Of Tables .. xiii
List of Figures ... xv
1 Introduction.. 1

1.1 Formal Learning Theory in the Gold Paradigm.. 3
1.1.1 Identification In The Limit... 3
1.1.2 Telltale Sets.. 6

1.2 Computational Models of Syntactic Parameter Setting 9
1.2.1 Triggers .. 10

1.2.1.1 Triggering Learning Algorithm .. 10
1.2.1.2 The Deterministic Structural Triggers Learner................................... 12

1.2.2 Stochastic Methods .. 18
1.2.2.2 Genetic Algorithm Learner ... 19
1.2.2.2 Naïve Parameter Learner .. 21
1.2.2.3 Guessing STL.. 24
1.2.2.4 Probabilistic Components of the TLA .. 24

1.2.3 Feasibility... 25
1.2.3.1 Learning From Triggers.. 26
1.2.3.2 Ambiguity and the Computational Feasibility of Syntax Acquisition 28
1.2.3.3 Modeling the Effect of Cross-Language Ambiguity on Human Syntax
Acquisition.. 32
1.2.3.4 Model Comparisons .. 35

1.3 The Subset Principle ... 37
1.3.1 Subset Principle Background... 38

1.3.1.1 Berwick ... 38
1.3.1.2 Manzini and Wexler.. 39

1.3.2 Arguments Against the Subset Principle ... 42
1.3.2.1 Becker ... 42
1.3.2.2 MacLaughlin ... 43

1.3.3 Subset Principle Compliance ... 44
1.3.3.1 The Shifting Problem.. 44
1.3.2.2 The Simple Defaults Model .. 46
1.3.3.3 The Ordered Defaults Model .. 47
1.3.3.4 Effects of Incremental Learning ... 48
1.3.3.5 Subset-free Triggers.. 49

1.4 The Simulation Platform... 50
1.4.1 CoLAG Domain... 50
1.4.2 Simulation Program ... 51

2 Partial Ordering Learners... 57
2.1 Justification For Adding Memory For Disconfirmed Grammars 57
2.2 General SP Lattice Learner... 58
2.3 SP Lattice Learner Variants .. 61

2.3.1 Parallel Parsing Vs. Serial Parsing... 62

 xi

2.3.2 Decoding .. 63
2.3.3 Decode Learner.. 63
2.3.4 Decode Favor Unmarked Learner.. 65
2.3.5 Integrated Learner.. 67
2.3.6 Flashlight.. 69
2.3.7 Largest Language Optimal Learner ... 71
2.3.8 Retrench Learner.. 75

2.4 Results and Discussion ... 79
2.4.1 LL Optimal Best For Sentences but Not Parses... 80
2.4.2 Integrated Learner Performs Best .. 80
2.4.3 Higher Parsing Priority Hinders The Decode Learner............................... 82
2.4.4 CoLAG Is Unlearnable For The Decode Favor Unmarked Learner.......... 84
2.4.5 Impact of the Flashlight ... 88
2.4.6 Retrench Learner Is Good But CoLAG Is Unlearnable............................. 91
2.4.7 The Parser and SP Work Best in Tandem.. 93

3 Comparison of Partial and Total Ordering Learners.. 96
3.1 Why Use A Partial Ordering? ... 97
3.2 Total Ordering Learners.. 97
3.3 Gold’s Total Ordering Learner ... 98
3.4 Memoryless Total Ordering Learner .. 100
3.5 Constrained Memoryless Total Ordering Learner .. 102
3.6 Discussion and Results ... 104

3.6.1 Total Ordering Learner Inefficient In Terms of Parses 104
3.6.2 Effects of Removing Total Ordering Input Sentence Memory Store 110
3.6.3 Constraining Total Ordering Learner Affects Performance 111
3.6.4 Partial Ordering More Efficient Than Total Ordering............................. 112

4 Effects of Language Domain Shape on Learning .. 115
4.1 Why Examine Language Domain Shape? .. 116
4.2 Tall Vs. Wide Lattices .. 116
4.3 Domain Ambiguity Within The Language Domains...................................... 117
4.4 Subset Language Domains.. 118

4.4.1 Description of Subset Language Domains... 118
4.4.1.1 Language Domain Shape - 5-45-45-5... 118
4.4.1.2 Language Domain Shape - Skewed .. 120
4.4.1.3 Language Domain Shape – 10 x 10 .. 121
4.4.1.4 Language Domain Shape – 50 x 2 .. 121
4.4.1.5 Language Domain Shape – 25 x 4 .. 123
4.4.1.6 Language Domain Shape – 4 x 25 .. 123
4.4.1.7 Language Domain Shape – 2 x 50 .. 124

4.4.2 Performance Across Subset Language Domains 125
4.4.2.1 SP Lattice Learner Performance Across Language Domains........... 125
4.4.2.2 Retrench Learner Results.. 127
4.4.2.3 Total Ordering Learner Results .. 131
4.4.2.4 Total Ordering Constrained Memoryless Learner Results 133
4.4.2.5 SP Lattice Flashlight Learner Results... 134
4.4.2.6 Discussion... 135

 xii

4.5 Properly Intersecting Language Domains... 137
4.5.1 Description of Properly Intersecting Language Domains........................ 139
4.5.2 Learner Performance On Properly Intersecting Language Domains....... 140

4.6 Discussion ... 143
5 Conclusions, Implications and Future Research.. 147

5.1 Summary of Findings.. 147
5.2 Future Research .. 150

Appendix A – Miscellaneous Procedure Descriptions ... 153
Appendix B – Pseudocode Guide ... 156
References... 157

 xiii

List Of Tables

Table 1: Lattice learner results on CoLAG domain.. 79

Table 2: Pearson r correlations for Lattice and Flashlight learners. 89

Table 3: Retrench learner performance on selected languages from the CoLAG

domain... 93

Table 4: Comparision of Total Ordering and Lattice learners 104

Table 5: SP Lattice learner results across language domains. 125

Table 6: Retrench learner results across language domains. 127

Table 7: Retrench learner results with languages grouped by row for the 5-45-45-5

language domain. .. 128

Table 8: Total Order learner results across language domains. 131

Table 9: Total Ordering Constrained Memoryless learner results across language

domains. .. 133

Table 10: SP Lattice Flashlight learner results across language domains. 134

Table 11: Relative performance of learners on language domains in terms of the

number of parses (fastest (1) to slowest (7))... 135

Table 12: Average number of subsets per language by language domain................ 136

Table 13: Average number of parses for languages in either the top or bottom row of

the 2x50 language domain. ... 137

Table 14: SP Lattice learner results across properly intersecting language domains.

... 140

Table 15: Retrench learner results across properly intersecting language domains. 141

 xiv

Table 16: Total Ordering learner results across properly intersecting language

domains. .. 141

Table 17: Total Ordering Constrained Memoryless learner results across properly

intersecting language domains. ... 142

Table 18: SP Lattice Flashlight learner results across properly intersecting language

domains. .. 142

 xv

List of Figures

Figure 1: Shifting problem.. 45

Figure 2: Example language domain learnable with ODM but not SDM. 47

Figure 3: Learner base class.. 52

Figure 4: Main processing loop. ... 53

Figure 5: Global variables... 54

Figure 6: An example learner class... 55

Figure 7: Setting the first hypothesis for the example learner algorithm. 55

Figure 8: Resetting the example learner for a new trial.. 55

Figure 9: Example learner algorithm. ... 56

Figure 10: Remove language 1 from SL and the lattice. .. 59

Figure 11: SPLatticeLearner class. ... 60

Figure 12: Lattice learner algorithm. .. 61

Figure 13: SPLatticeDecodeLearner class. ... 64

Figure 14: SP Lattice Decode learner algorithm... 64

Figure 15: SPLatticeDecodeFavorUnmarkedLearner class.. 66

Figure 16: SP Lattice Decode Favor Unmarked learner algorithm. 66

Figure 17: SPLatticeIntegratedLearner class. ... 67

Figure 18: Integrated learner algorithm. ... 68

Figure 19: SPLatticeFlashlightLearner class. ... 70

Figure 20: SP Lattice Flashlight learner algorithm... 71

Figure 21: SPLatticeLLOptimalLearner class. ... 73

 xvi

Figure 22: LL Optimal learner algorithm. .. 74

Figure 23: RetrenchLearner class. .. 76

Figure 24: Retrench learner algorithm.. 77

Figure 25: Retrench procedure.. 78

Figure 26: TotalOrderingLearner class... 99

Figure 27: Gold’s Total Ordering learner algorithm... 100

Figure 28: TotalOrderingMemorylessLearner class. .. 101

Figure 29: Memoryless Total Ordering learner algorithm.. 101

Figure 30: TotalOrderingConstrainedMemorylessLearner class.............................. 102

Figure 31: Constrained Memoryless Total Ordering learner algorithm. 103

Figure 32: Language domain with ambiguous input sentences. 108

Figure 33: Language Domain Shape 5-45-45-5 Fully Connected 119

Figure 34: Language Domain Shape Skewed Fully Connected 120

Figure 35: Language Domain Shape 10 x 10 Fully Connected 121

Figure 36: Language Domain Shape 50 x 2 Fully Connected 122

Figure 37: Language Domain Shape 25 x 4 Fully Connected 123

Figure 38: Language Domain Shape 4 x 25 Fully Connected 124

Figure 39: Language Domain Shape 2 x 50 Fully Connected 124

Figure 40: Target language that is hard for the Total Ordering learner to acquire. .. 132

Figure 41: Language domain with high domain ambiguity...................................... 138

Figure 42: Language domain with low domain ambiguity....................................... 139

Figure 43: Language shape that is hard for the Retrench learner. 144

Figure 44: Language shape that is easy for the Retrench learner. 145

 1

1 Introduction

The main goal of this research is to investigate psychocomputational models of

learning that abide by the Subset Principle (SP). First proposed by Gold (1967),

though the term is generally attributed to Berwick (1985), Manzini and Wexler

(1987) and Wexler and Manzini (1987). We will use Fodor and Sakas (2005)

definition of SP. Note that for Fodor & Sakas a smallest language means a language

in a learning domain that does not properly contain any other language in the domain

(i.e., a smallest language does not contain a subset language).

When the learning mechanism’s current language is incompatible with a new

input sentence i, the learning mechanism should hypothesize a UG-compatible

language which is a smallest superset of i and all prior input sentences

retained in its memory, excluding any language recorded in memory as having

been disconfirmed by prior input.

Fodor and Sakas (2005)

The Subset Principle will be used to help the learners navigate the search space. SP is

a rule that learners employ in order to avoid getting stuck in a state from which they

cannot escape. The need for SP arises when a language domain contains two

languages such that one is a subset of the other. Most, if not all, computational

models of human language learning at the present time do not abide by the Subset

Principle (see discussion in Gibson and Wexler, 1994; Sakas and Fodor, 2001). There

is an abundance of research that shows that it is difficult for a learner to navigate the

 2

search space of possible languages to find the target language, even with supersets of

the target removed (Clark, 1992; Gibson and Wexler, 1994; Briscoe, 2000; Sakas and

Fodor, 2001; Yang, 2002). Clearly, adding supersets to the language domain makes

the problem even harder. For learners that do not change their hypothesis unless the

current input contradicts it, hypothesizing a superset of the target would cause the

learner to fail. The current research is to develop learners that can successfully learn

in an environment containing supersets of the target language.1 The learners being

developed are constrained such that they are allowed only two parses per input

sentence. The motivation for this is to develop learners that embody

psycholinguistically viable constraints. The models under investigation will be

endowed with memory for past grammars (Fodor and Sakas, 2005). A comparison

study was also done which compares our partial ordering learners against traditional

total ordering learners. In addition, we investigate how the shape of the language

domain affects learner performance.

1 Throughout I will freely interchange the terms language and grammar. Based on context I intend
either the sentences generated by a grammar, or the grammar itself.

 3

1.1 Formal Learning Theory in the Gold Paradigm

The Gold paradigm was designed to enable the investigation of language learning

(Gold, 1967). Gold’s paradigm has had a great influence on research in the area of

language learnability and computational linguistics. The main result of his research

was a proof that all the classes of languages in the Chomsky hierarchy except the

class of finite languages are not learnable from a positive presentation of data. Most

developmental psychologists believe that children learn language by getting only

positive instances of data so this is a very important result. However, further research

(Angluin, 1980) has proved that there are other classes of languages that are learnable

from positive data. This first section will describe “identification in the limit” which

is Gold’s definition of learnability. The second section will describe “telltale” sets.

Telltale sets are used to identify a target language that is generating the positive

presentation of data; if all languages in a class of languages contain a telltale set, then

that class is learnable from positive data.

1.1.1 Identification In The Limit

Learners in the Gold paradigm receive infinite sets of input strings and make a

hypothesis about the target language after each individual input. A language is

considered learnable in the Gold paradigm if it can be “identified in the limit”.

Identification in the limit means that after a finite amount of time the learner will

 4

always guess the same language and that language will be the target language.

Identification in the limit is a realistic definition of learnability because presumably

children do not in fact know for sure when, during the course of learning, they have

hypothesized the correct (target) language.

In the Gold paradigm classes are considered learnable with respect to a given

information presentation (text or informant). An information presentation method is

the way in which a learner receives training data. A text is defined as an infinite set of

strings taken from the target language and only from the target language. No other

strings can appear in a text. All strings of the target language are guaranteed to appear

at least once in a text. An informant is defined as an infinite set of pairs of data. Each

pair consists of a string and a binary value saying if that string is a member of the

target language. Gold breaks down the text and informant types further into subtypes

and the results are all the same with one exception (Gold, 1967).2 The text and

informant methods of information presentation can be compared to the ways a child

may receive data. If the child is only being given strings of the target language then

she is being exposed to a text. If the child is being given corrective information about

strings not in the target language, in addition to strings from the target language then

she is being exposed to an informant.

Gold defined a guessing rule called identification by enumeration that the learner

should use to hypothesize languages. Identification by enumeration proceeds as

follows: (1) Enumerate the class of languages in any way such that they all appear at

2 Anomalous text.

 5

least once. (2) After each input sentence guess the unknown language to be the first

language of the enumeration that agrees with the information received so far. It is

important to point out that there are enumerations that will not work with a text

information presentation for certain classes of languages. For instance, a class of

languages that contains subset/superset languages will not be learnable with an

enumeration that puts the supersets first. The learner will search the enumeration for

the first language that is consistent with the input data so far and that language could

be a superset of the target. Since the Gold learner is error-driven it will not change its

current hypothesis unless it is necessary. If the learner is hypothesizing a superset of

the target then it will never be necessary to change the hypothesis because all

sentences in the subset language are also members of the superset language. If the

information presentation were changed from a text to an informant though it would be

possible to learn from the problematic enumeration because the informant contains

negative information that allows it to move from the superset hypothesis.

Gold proved that any class of languages that contains all the finite languages over a

vocabulary plus one infinite language that contains those finite languages is not

learnable from a text presentation. This means that all the classes in the Chomsky

hierarchy except the class of finite languages are not learnable from text alone. Gold

believes that the ramifications of this with regards to child learning would be that

either (1) The class of possible natural languages is much smaller than expected or (2)

the learner receives negative information in a way we do not recognize or (3) there

 6

are constraints on the way positive data are presented to the learner such as the order

of presentation (Gold, 1967, p 453).

Finite classes of languages have been shown to be learnable using identification by

enumeration under the criterion of identification in the limit (Bertolo, 2001). The

enumeration of grammars must have the property that if k>j then either L(Gk) = L(Gj)

or there is at least one sentence in L(Gk) that is not in L(Gj). This property of the

enumeration is important because it will force the learner to eventually hypothesize

the target language. Information presentation by text guarantees that every sentence

will show up at least once so we are guaranteed that the sentences the learner needs to

move it through the enumeration will appear. This property also guarantees that all

subset languages will appear before their respective superset languages so the learner

cannot hypothesize a superset of the target. By definition, the number of languages

definable within the principles and parameters framework (Chomsky, 1981;

Chomsky, 1986) is finite so they are in fact learnable in the limit using identification

by enumeration (assuming the enumeration has the property just described above).

Depending on the number of parameters, though, it may take an intractable amount of

time to converge on the target language. Learning in the principles and parameters

framework is theoretically possible but not necessarily feasible.

1.1.2 Telltale Sets

 7

Research has been done which shows that there are certain conditions that when met

allow a learner to learn nonempty recursive formal languages from positive data (i.e.,

text presentation)(Angluin, 1980). Angluin has done research that considers inductive

inference of formal languages from positive data in the Gold paradigm (Angluin,

1980). Gold proved no class of languages in the Chomsky hierarchy is learnable from

only positive data. Angluin describes classes of recursive languages that are in fact

learnable from positive data, however they do not fit neatly as subclasses in the

Chomsky hierarchy. The main characteristic of these classes of languages is that

every language has a “telltale” set. A telltale set is a finite subset T of a language L

such that no other language of the class that contains T is a proper subset of L. If all

of the sentences of a telltale set T of L appear in the input stream then the learner can

safely hypothesize L and be guaranteed of not commiting a superset error. The

existence of telltale sets for each language guarantees that a given class of recursive

languages can be learned from positive data.3

Sakas and Fodor make use of the idea of a telltale set with their subset-free trigger

(Fodor and Sakas, 2005). A subset-free trigger is simply a telltale set with only one

item. In the Fodor & Sakas paradigm, there is no enumeration, so subset-free triggers

serve as a mechanism to avoid superset hypotheses. In order for a domain of

languages to be learnable using an incremental learner4, without an enumeration, all

3 More specifically, an indexed family of nonempty recursive languages is inferable from positive data
if and only if each language of the given class has a telltale set. An indexed family of nonempty
recursive languages is an infinite sequence of nonempty languages such that there is an effective
procedure to compute the membership function for each of the languages of the sequence (Angluin,
1980, p 119-121).
4 Incremental learning means no memory for past inputs or past grammar hypotheses.

 8

of the languages in the domain must have a subset-free trigger. If they don’t then the

learner runs the risk of chronic undergeneralization if the target language is indeed a

superset and doesn’t contain a subset-free trigger. This would happen because no

input string would exist that would force (trigger) the learner to hypothesize the

superset.

 9

1.2 Computational Models of Syntactic Parameter Setting

Syntactic parameter setting models are based on concepts taken from the principles

and parameters framework (Chomsky, 1981). The principles and parameters

framework is made up of two main components: Universal Grammar (UG) and

Parameters. The UG component consists of the principles that are common to all

grammars (Chomsky, 1957). An example of a universal principle would be that every

sentence must have a subject. The parameters component is made of all the

grammatical features that can vary. An example of this would be the null subject

parameter. If this parameter is set (on) then the resulting grammar is not required to

have an overt subject (e.g., Spanish). If it is not set (off) then the resulting grammar is

required to have an overt subject (e.g., English). The starting state for each parameter

should not be presupposed to be off. For each grammar there is a unique set of

parameter values that identifies it. Learners in the principles and parameters

framework are required to find the values for each parameter that will identify the

target language. Once the parameters are set correctly then learning is complete.

Chomsky developed the principles and parameters framework in part because it

appeared to have an advantage over rule-based, transformational paradigms. It was

envisioned that the amount of information that a learner would need to acquire

intuitively seems small (linear with the number of parameters) in comparison with the

amount of information that would be required to establish the correct rules and

transformations from scratch. Some models deduce parameters values while others

use probabilistic methods. All classes of languages in the principles and parameters

 10

framework are guaranteed to be Gold-learnable because they all have a finite size.

The rest of this section will describe some of the most important learners in the

principles and parameters framework.

1.2.1 Triggers

1.2.1.1 Triggering Learning Algorithm

The first learner to be based on triggering was developed by Gibson and Wexler

(Gibson and Wexler, 1994). They describe an algorithm which uses triggers to set

parameter values within the principles and parameters framework. A trigger is a

sentence which determines that a parameter must be set to a certain value in order for

that sentence to be analyzed correctly or at all. The algorithm described is called the

Triggering Learning Algorithm (TLA). The TLA proceeds as follows: Get an input

sentence S. If it is recognized by the current hypothesis then move on to the next

input sentence. Otherwise, uniformly select a parameter P and change its value. Call

this new grammar G2. Now analyze S again using G2. If it is successful then G2

becomes the new hypothesis. Otherwise, keep the original value of the parameter

which amounts to keeping G as the hypothesis. The TLA follows the error-driven,

Greediness and Single Value Constraints (SVC) (Clark, 1992). The error-driven

constraint says that the learner should only change its current hypothesis when it

 11

cannot parse the current input sentence. The Greediness constraint means that the

learner will only adopt a new hypothesis if the new hypothesis can analyze the current

input sentence and the current hypothesis cannot. Finally, the Single Value Constraint

says that at most one parameter may be changed per input sentence.

Triggers are divided into two types: local and global. A global trigger for a parameter

value v of a single parameter Pi is a sentence from the target language such that the

sentence can only be analyzed only if Pi is set to v. The values of the other parameters

do not matter. A local trigger for a parameter value v of a single parameter Pi is a

sentence from the target language such that the sentence can be analyzed only if Pi is

set to v given a set of values for all other parameters. In contrast to global triggers,

local triggers depend on the values of the other parameters.

Whether or not the TLA can converge on the target language in the limit depends on

the existence of at least one local or global trigger for each incorrectly set parameter.

It has been shown by Gibson and Wexler that at least one linguistically plausible

parameter space exists for which there are no local triggers and therefore no way of

reaching the target grammar.5 They give two solutions to this problem. The first

solution is to make the default initial grammar one such that a local maximum cannot

be reached from it. The second solution is to initially delay the learner from setting

parameters that can lead to a local maximum. They conclude that the existence of

these solutions means that triggering theory may still be essentially correct (Gibson

and Wexler, 1994, p 410). Gibson and Wexler prove that the TLA can converge but

5 Learner is in local maxima.

 12

not that it will necessarily converge. (Berwick and Niyogi, 1996) show that the TLA

is not guaranteed to converge even if local triggers do exist for all languages.

It is important to note that the TLA is not guaranteed to learn languages that are

subsets of other languages. Gibson and Wexler mention the existence of subset

parameters, parameters whose different values result in subsets of one another. Since

the TLA is error driven there can be no triggers for the subset value of a subset

parameter if the learner has adopted the superset value. Due to this fact Gibson and

Wexler restrict their discussion of triggers to language domains in which there are no

subset-superset relations.

The TLA is important because it gave an algorithm for acquisition of grammars that

are defined by a finite number of parameters. It has been the springboard for a great

deal of research in computational modeling of parameter setting, (e.g., Berwick and

Niyogi, 1996; Briscoe, 2000; Sakas, 2000a; among others).

1.2.1.2 The Deterministic Structural Triggers Learner

A major downfall of the TLA is that its version of triggering is nondeterministic.

Given a current hypothesis and a trigger, all parameters are available for updating

regardless of whether or not they will cause the current input sentence to be

analyzable. Triggers in the TLA are ambiguous from the learner’s perspective

because the learner does not know which parameter value(s) need to be set in order to

 13

accept the current input sentence.6 In contrast, Fodor developed a deterministic

learning device, the Structural Triggers Learner (STL) (Fodor, 1998b; Sakas and

Fodor, 2001). The STL differs from the TLA in two important ways: (1) it detects and

discards any input that is ambiguous as opposed to the TLA which uses it and (2) it

only changes its grammar (i.e., adopts different parameter values) when it receives

unambiguous input. The main 'rule' of the STL is “Do not learn from ambiguous

input”. The TLA on the other hand does not discriminate between parametrically

ambiguous and unambiguous input. When the TLA receives an input that cannot be

parsed by the current grammar it chooses a new parameter at random and changes the

value. If the new parameter setting enables the grammar to parse the input the change

is accepted. Otherwise, the parameter is retained at its current value. The problem

here is that there may be more than one parameter change that would allow the input

sentence to be parsed, the input is ambiguous. Setting a parameter on the basis of

ambiguous input creates the possibility of setting the parameter incorrectly. If a

parameter gets set incorrectly the TLA will either waste time resetting the parameter

to the correct value or, even worse, get stuck in a local maxima and never attain the

target language. The STL avoids this problem by using unambiguous triggers to drive

the parameter setting process.

The STL is based on the idea that the parser should be used to identify triggers. Sakas

and Fodor (2001) describe two main problems that need to be solved for triggering to

work properly:

6 TLA could set more than 1 parameter value if Single Value Constraint were removed.

 14

1. The parsing paradox (Valian, 1990; Sakas and Fodor, 2001). The sentence

processing mechanism can only parse those sentences licensed by the current

grammar. Sentences that are not licensed by the current grammar contain information

the learner needs to update the current grammar. The learner will never get the update

information and as a result will never update the current grammar since the sentence

processing mechanism cannot process the sentences it needs to extract information

for the learner.

2. Parametric ambiguity. What parameters should a learner set for a sentence that is

licensed by conflicting parameter values?7

The TLA is able to solve the parsing paradox by testing alternative grammars.

However, it does not escape the problem of parametric ambiguity because it only tries

one alternative per input sentence. When ambiguity is high the chance of adopting the

wrong grammar increases. If the wrong grammar were chosen then the TLA would

need a substantial number of sentences before encountering enough triggers that

would allow the TLA to recover from this error. There is also the chance that it may

never recover due to the presence of local maxima. Even if there were no local

maxima in the domain, since the TLA is non-deterministic the randomly chosen

parameter may very well create a candidate grammar that does not license the input

sentence hence wasting a potentially informative input sentence. Due to greediness

the learner will not adopt that grammar and the input sentence will have been wasted.

7 Note that this is specifically a definition of parametric ambiguity. Another definition of ambiguity is
when a sentence is parsable by multiple grammars. I.e., it is in more that one language. See Sakas &
Fodor (2001) for discussion.

 15

These conditions create a heavy workload for the TLA even for a small number of

parameters.

The parametric principle (Sakas and Fodor (2001) following Chomsky (1981)) says

that the value of each parameter should be established independently of the values of

all others. The benefit of this is that for n parameters a learner only needs n pieces of

information to find the target grammar. So the workload is linear with respect to the

number of parameters. For this learning scheme to succeed, when a parameter is set

there must be no doubt as to whether or not it has been set correctly. The TLA cannot

guarantee that when it sets a parameter that it is in fact correct. The only time the

TLA knows that any given parameter is set correctly is when it has attained the target

grammar. The TLA always has a search space of 2n grammars.8 A learner that abides

by the parametric principle would set each parameter once and that setting would be

correct, effectively halving the search space with each parameter that is set, with the

potential of dramatically increasing the speed of learning.

The original STL versions (Fodor, 1998b; Sakas and Fodor, 2001) solve both the

parsing paradox and parametric ambiguity problems and also abide by the parametric

principle. The STL uses the concept of structural triggers as a basis for learning.

Structural triggers are small pieces of trees called treelets that are used both as a

trigger and a parameter value. Treelets are presumed to be provided by the innate

Univeral Grammar. Each treelet corresponds to a characteristic of a grammar. For

8 But see Sakas (2000a) who demonstrates that under certain specific 'smoothness' conditions the TLA
performs reasonably well despite the exponential search space.

 16

example, there is a treelet that represents the complement-final value of the word

order parameter for a verb phrase. If a grammar contained this treelet it would be

complement-final for verb phrases. A grammar is just a combination of treelets

(together with universal principles). The Supergrammar is all possible treelets (and

universal principles).

One algorithm that makes use of structural triggers operates as follows,

Strong-STL Algorithm:

(1) Parse the current input with the current grammar.

(2) If the parse is successful then keep the current grammar and goto (1).

(3) Parse the current input with the supergrammar.

(4) If there is only one parse then adopt into the current grammar those

treelets in the parse tree (drawn from the supergrammar) that are not in the

current grammar and goto (1).

(5) If there is more than one parse adopt those treelets that show up in all of

the supergrammar parses and goto (1).

(6) If there is more than one parse and there are no common tree fragments in

the supergrammar parses then the input is fully ambiguous parametrically

so retain the current grammar and goto (1).

The STL will never adopt a parameter value from an input if the input is ambiguous

with respect to that parameter. In general, language domains with larger amounts of

parametrically ambiguous sentences are harder to learn than language domains

 17

containing smaller amounts of parametrically ambiguous sentences (see Sakas and

Fodor (2001) for a detailed analysis of how parametric ambiguity affects learner

efficiency). Information may be lost by dropping sentences but it is necessary to

ensure error-free learning. The STL solves the parsing paradox by use of the

"supergrammar" to parse any sentences not licensed by the current grammar. In this

way it is guaranteed to always be able to parse a sentence even if it is not licensed by

the current grammar. The STL follows the parametric principle because each treelet

serves as a parameter value and that parameter value is adopted independently of the

others. It will also only be set once as opposed to the TLA where it could be set many

times.

For the STL, triggers are more than the left to right words that make up the input

sentence; triggers are fragments of a tree structure. These fragments are considered

to be innate and part of the Universal Grammar (UG). The Strong-STL is an "ideal"

learner rather than a psychological model. It is useful as a standard against which to

compare other models. However, Fodor and Sakas have been consistent in viewing

the potentially massive parallel parsing that is required by the Strong-STL as

psychologically implausible. The Strong-STL is an ideal learner in that it only sets

parameter values if it knows those values are correct. Another STL variant called the

Waiting-STL is also ideal in this respect. The Waiting-STL is the same as the Strong-

STL except that it will adopt treelets only on the basis of sentences that have a single

parse; i.e. fully unambiguous sentences. Whenever the Waiting-STL parser

encounters a choice point during parsing, it notes that there is more than one possible

 18

parse and chooses a path to complete the parse. This type of parsing is called a

flagged serial parsing (Inoue and Fodor, 1995). Any sentence that results in a flagged

parse will not be used to update the current hypothesis. In contrast, as noted above,

the Strong-STL will compile every possible parse of the current input sentence and

search those parses for treelets that appear in each one. Any treelets that appear in all

parses are safe to adopt into the hypothesis grammar. An unambiguous trigger (either

a sentence with treelet(s) appearing in all parses or a sentence with only one parse)

paves the way for the creation of a deterministic learning algorithm.

In theory, both the Strong-STL and the Waiting-STL make it possible to conduct

error-free learning in a reasonable amount of time for a parameter space large enough

to describe natural languages. However, as I discuss below, large amounts of

ambiguity in the language domain probably make these STL versions infeasible as

models of human language acquisition. A variant of the STL called the Guessing-

STL, which has a probabilistic component, works better in practice (Sakas and

Nishimoto, 2002; Fodor and Sakas, 2004; Fodor and Teller, 2000).

1.2.2 Stochastic Methods

Stochastic methods use probabilistic algorithms to drive learning. Two important

stochastic methods are Clark’s Genetic Algorithm model (Clark, 1992) and Yang’s

Naïve Parameter Learner (Yang, 2002). The main advantage of stochastic methods is

that they are able to perform hill-climbing searches with the benefit of being able to

 19

escape from local maxima. In addition, there is no need to apply the subset principle

to these models because they are not susceptible to the subset problem in the first

place. It is important to have an understanding of these models because they show

alternative methods for creating learners that can deal with the subset problem.

1.2.2.2 Genetic Algorithm Learner

Clark created the first statistical approach to parameter setting in the principles and

parameters framework (Clark, 1992). Clark’s learner uses a genetic algorithm (GA) to

move through the search space. The learner starts by generating a population of

hypothesis strings at random. Each hypothesis string is made of 0’s and 1’s that

correspond to the values of each parameter. Next, each hypothesis string is compiled

into a parsing device that represents that hypothesis string. This parsing device is an

implementation of the parameter settings in the hypothesis string. An input sentence

is now read in from the environment and parsed by each of the parsing devices. The

parsing data is used as input to a fitness metric that determines how “good” the

hypothesis is at parsing the input sentence. The fitness metric takes into account

grammatical violations in the parse, subset relations, and general elegance of the

parse. The subset and elegance factors are weighted such that they will not affect the

computation as much as grammatical violations will. The genetic operators are now

applied. A crossover operation is done on two hypotheses selected at random from the

hypothesis strings. The random selection is weighted according to the fitness of the

 20

hypotheses. More fit hypotheses are more likely to be selected for crossover than less

fit hypotheses. A crossover is done by taking the first half of the parameters from one

of the hypotheses and combining it with the parameters from the second half of the

other hypothesis. The second half of the first hypothesis is also combined with the

first half of the second hypothesis. For example, suppose the domain has four

parameters and the two hypothesis strings are 1111 and 0000. The crossover

operation for these strings would result in the hypothesis strings 1100 and 0011. The

two new hypothesis strings are now added to the population. The learner now

performs a mutation operation. A mutation operation is performed by selecting a

hypothesis string at random from the population (according to fitness) and flipping

one of its parameter values. For example, a mutation operation on the string 1111

could result in the string 1101. The final genetic operation is to eliminate

hypothesis(es) from the population. Hypothesis(es) are chosen at random according to

their fitness and removed from the population of hypothesis strings. The least fit

hypothesis(es) are more likely to be eliminated than the most fit. The cross-over and

mutation operations occur for each input sentence while the elimination of

hypothesis(es) is only done occasionally. If the population consists of a single

hypothesis string that matches the target then learning is done. Otherwise, start the

process over by recompiling the population hypothesis strings into parsing devices.

The GA learner is not susceptible to the superset problem like error-driven learners

are. The fitness metric will tend toward favoring hypotheses that generate smaller

languages, just as the Subset Principle says to do. Supersets of the target may be kept

 21

as part of the population for a while but they will eventually be deemed unfit and

removed. In contrast to the GA learner, error-driven learners must never hypothesize

a superset of the target because they have no way of updating the current hypothesis

if it succeeds in parsing the current input sentence. For the GA learner, target

languages that are supersets of other languages might seem like a problem because of

the GA learner’s tendency toward favoring smaller languages but they are not. If the

target language happens to be a superset of some other language it will eventually be

attained because the grammatical violations piece of the fitness metric will dominate

the superset piece causing the GA learner to give up the smaller language. This

domination will allow the superset hypothesis strings to prosper and eventually

converge on the target.

1.2.2.2 Naïve Parameter Learner

Yang created a stochastic learner called the Naïve Parameter Learner (NPL) (Yang,

2002). The main idea of the NPL is that it rewards grammars that perform well and

punishes grammars that perform poorly. Repeated applications of reward and

punishment should ultimately guide the learner to the target grammar.

The NPL maintains a set of weights each of which corresponds to one parameter. The

NPL starts by choosing a hypothesis grammar at random. The new grammar is

created by randomly selecting values for each parameter according to their individual

weights. All weights are initialized to 0.5. An input sentence is read in and tested

 22

against the current hypothesis grammar. If the current hypothesis can parse the input

then the learner rewards all the parameter values in the current hypothesis. Otherwise,

it punishes all the parameter values in the current hypothesis. Rewarding a parameter

means updating its weight such that it moves closer to its marked state. Punishing a

parameter means updating its weight such that it moves closer to its unmarked state.

Learning continues until all parameter weights are within a given threshold of either

the marked or unmarked values. For example, if the threshold value is .001 then

learning will continue until all parameter values are either less than .001 or greater

than .999. The amount to punish or reward parameter weights can be changed so as to

speed up or slow down movement through the search space. A large increment will

allow for bigger jumps in the search space. This opens up the possibility of

converging quickly on the target but it also makes the learner susceptible to

oscillating parameter values that would hinder convergence. A small increment

moves more slowly through the search space but it should always be moving steadily

toward the target grammar.

The NPL does not employ the subset principle as part of its logic. It relies on the

probabilistic nature of the algorithm to avoid superset hypotheses. If a situation arises

where the superset value is set and it keeps getting rewarded then the learner will

move towards the superset hypothesis. The NPL learner is susceptible to superset

errors due to the fact that learning stops by threshold. If the set of parameter weights

represent a superset hypothesis then all input sentences will reward those parameter

values. As the parameter weights get closer to thresholds representing superset values

 23

there is less of a chance that a non-superset grammar will be chosen at random. For

the learner to escape from a potential superset error it would need to randomly select

a grammar that is not the superset grammar and have that grammar fail to parse the

current input sentence. As a result, the parameter weights will get punished and their

values would move away from the superset hypothesis. The learner could still have its

parameter weights move away from a superset hypothesis but the chances of that

happening become smaller the closer the parameter weights are to a superset

grammar. The time it would take to recover would depend on the increment of

reward/punishment being used. A very small increment could essentially stop the

learner from escaping the superset hypothesis. A large increment would allow the

learner to escape much more easily. If the parameter weights become very close to a

superset hypothesis then random grammar selection will settle on the superset

hypothesis most of the time. The weights need to move from the superset hypothesis

parameter values in order to increase the chance of generating hypotheses other than

that particular superset hypothesis. A smaller increment requires more successive

punishments of parameter weights that are close to the superset hypothesis as

compared to a larger increment. A small increment value only changes the parameter

weights a little each time so more punishments are needed to create a significant

change. For the parameter weights to move from the superset hypothesis the

parameter values need to be chosen that are different from the superset hypothesis.

The likelihood of randomly choosing parameter values that do not make up the

superset hypothesis is very low when the weights are close to those of the superset

hypothesis.

 24

1.2.2.3 Guessing STL

The Guessing-STL is a probabilistic learner that is a variant of the original STL

(Sakas and Fodor, 2000; Sakas and Nishimoto, 2002; Fodor and Sakas, 2004). The

Guessing-STLs work by choosing a parse when ambiguous input is encountered. This

is in contrast to the Strong-STL and the Waiting-STL deterministic variants that

discard the input if it is ambiguous.9 The Guessing-STLs vary from each other by the

strategy they use to choose a parse. The Any Parse strategy tells the learner to choose

a parse at random. The Minimal Connections strategy chooses the parameter value

that results in the smallest parse tree. The Least Null Terminals strategy selects the

parse with the fewest empty categories. The Nearest Grammar10 strategy chooses the

grammar that differs least from the current hypothesis. Other guessing strategies

could be implemented. The performance of the Guessing-STLs turned out to be better

than the performance of the deterministic STL versions (see discussion below in

Model Comparisons).

1.2.2.4 Probabilistic Components of the TLA

9 Waiting-STL discards ambiguous input immediately while Strong-STL will try and find common
treelets among parses and then discard if none are found. See section 1.2.1.2 for description of
Waiting-STL and Strong-STL.
10 Nearest Grammar is called Strong Oracle in Sakas and Nishimoto (2002).

 25

Gibson and Wexler’s Triggering Learning Algorithm also has a probabilistic

component but it does not reap the rewards. In the TLA, the learner chooses a

parameter at random when the current grammar hypothesis fails to parse the current

input sentence. This randomness is not enough to help the TLA escape local maxima

though. The randomness in the TLA is only encountered when the input sentence

cannot be parsed by the current hypothesis grammar. If the TLA hypothesizes a

superset of the target it will never recover because it is error driven and it will never

change its hypothesis. The randomness in the TLA is subservient to the error driven

nature of the learner. In each of Clark’s and Yang’s learners the probabilistic pieces

are more prominent.

1.2.3 Feasibility

Much research has been devoted to the learnability of models (Gold, 1967; Angluin,

1980). Learnability is concerned with which language domains logically can and

cannot be learned using a given learning model. The problem of feasibility has not

been tackled until recently, however. Feasibility deals with how long it will take to

learn languages in a domain as opposed to if the domain can be learned at all. It is

important to know if something can be computed but it is also relevant to know how

long it will take given that it can be computed. Methods of determining algorithm

feasibility are useful in determining whether or not those algorithms are viable as a

model of human acquisition. There would be no point in constructing models of

human acquisition that are intractable. Methods of determining algorithm feasibility

 26

are also useful as a means of comparison between algorithms as well as a way to

uncover unforeseen problems with regards to local maxima (e.g., Niyogi and

Berwick, 1996).

1.2.3.1 Learning From Triggers

Berwick and Niyogi (1996)11 show that it is possible to model any memoryless

learner as a Markov chain. In addition, they apply this technique to Gibson and

Wexler’s Triggering Learning Algorithm (TLA) (Gibson and Wexler, 1994). They

describe more initial-final grammar pairs for which the TLA learner does not

converge on the target and also describe flaws in the way Gibson and Wexler define a

“problem state”. Sakas (2000a; 2001) also applies Markov techniques to analyze the

TLA as well as Fodor’s (1998b) STL model. See discussion below.

Modeling the behavior of the TLA as a Markov chain makes it possible to estimate

the average number of sentences required to learn a target language.12 Berwick &

Niyogi (1996) set up the Markov chain as follows:

Each grammar state represents a node. There is a link from one grammar (A) to

another grammar (B) if (1) the hamming distance of the parameter settings is 1 and

11 Berwick and Niyogi (1996) and Niyogi and Berwick (1996) contain much overlapping material.
Since it is the overlapping material that is relevant to my dissertation, I will take the liberty to cite
either of them.
12 Sakas (2000a, p 30) gives a detailed description of how to perform the calculations for the average
number of inputs required to learn a target language using a Markov chain.

 27

(2) there is an input sentence that is a member of B that is not a member of A.

Absorbing states are nodes with no outgoing links. These are either the target state or

one of the local maxima (if any). All outgoing links have a transition probability

associated with them. The sum of all outgoing links of a node must be 1.

Gibson and Wexler define a “problem state” as a grammar from which there is no

path to the target grammar. A learner hypothesizing this state is destined to fail with

probability equal to 1. Berwick and Niyogi show that this definition leaves out

problematic grammars from which a learner may get to the target grammar, but from

which a learner may not (with a probability less than 1). Berwick and Niyogi define a

“problem state” as a grammar which is connected to a non-target absorbing state (or

local maxima). They show that the probability of reaching these local maxima is

significant and therefore that the Gibson and Wexler definition is flawed. So out of

the 56 initial-final grammar pairs, Berwick and Niyogi calculate 12 that are not

learnable with a probability of 1 as opposed to the 6 that Gibson and Wexler

calculate.

Berwick and Niyogi also mention that the Gibson and Wexler maturational solution

to the local maxima problem is not correct. They say that there is a significant

probability that a local maximum could be reached even if the learner avoids early

setting of a parameter that leads to a local maximum. G & W’s maturational solution

is based on the assumption that all strictly absorbing states are avoided by waiting for

a finite period of time. Unfortunately, other absorbing states exist which can be

 28

reached with a probability greater than 0. The existence of these other absorbing

states means that G & W’s maturational solution is not guaranteed to work in all

cases.

Finally, they also show that the TLA’s two heuristics (SVC and Greediness) slow

learning down when combined. When one or the other heuristic is removed, the TLA

surprisingly converges faster (cf., Sakas, 2003). This is significant because with either

one of the two heuristics removed, all local maxima disappear.

1.2.3.2 Ambiguity and the Computational Feasibility of Syntax
Acquisition

Following Niyogi and Berwick, Sakas (2000a) created a slightly different

computational framework for analyzing the feasibility of parameter setting models of

language acquisition. The performance of the TLA and the STL13 were analyzed

using this framework.

The computational framework is set up similarly to the one created by Niyogi and

Berwick (1996). One difference in the frameworks, though, is the definition of a state

when setting up the Markov structure. Niyogi and Berwick assign one grammar per

state. The current formulation partitions all the grammars according to hamming

distance from the target grammar and then assigns one partition per state. These

partitions are called G-Rings. Sakas assumed that all grammars in a G-Ring have an

13 Waiting-STL variant.

 29

equal probability of parsing an input sentence (Weak Smoothness Requirement). Arcs

represent the probability of moving from one G-Ring to another. Sakas defined a

function that gives the probability of moving from one G-Ring to another. This

function takes into account various factors such as ambiguity and parameter

expression rate. Ambiguity is the number of grammars that can parse a given

sentence. Parameter expression rate is the average number of parameters expressed by

sentences of a given language. By varying these function parameters different

learning environments can be simulated. A Markov structure is created from this state

space graph. This Markov structure is used to calculate an estimate of the number of

sentences required to learn a target language (Sakas, 2000a).

The analysis of the TLA shows that it performs best when the ambiguity is distributed

according to a smooth domain. A smooth domain is one in which more similar

grammars generate more similar languages. Sakas’ Strong Smoothness requirement

says that the domain should be weakly smooth (see above) and that the probability of

a successful parse is greater for G-Rings closer to the target than for those G-Rings

further away. In all other situations the feasibility of TLA performance is

unreasonable, so much so that it is worse than a learner that chooses grammars

completely at random.

Sakas (2000a) also performed an analysis of the STL. The STL seems to perform best

in a realistic natural language domain when the parameter expression rate varies for

each sentence. The STL performs well when the expression rate is fixed and low but

 30

this does not simulate a realistic learning situation (cf. Sakas and Fodor, 1998). In

order to simulate realistic conditions the expression rate must be high which in turn

presents problems for the STL. These problems result from the fact that the

deterministic STLs require parametrically unambiguous input to set parameters.

Having a high parameter expression rate increases the chances that an input sentence

will be ambiguous and consequently discarded. If the parameter expression rate were

allowed to vary then it opens up the possibility that a sentence with a low expression

rate will be encountered and that parameters will be set. The STL abides by the

parametric principle (set individual parameters; don’t evaluate whole grammars)

which needs only a linear number of learning events as opposed to an exponential

number that would be needed if the learner evaluated individual grammars. Once a

few parameters are set, each subsequent input will be less parametrically ambiguous

and successful learning events will occur more frequently.

Sakas’ research creates a means of comparing different learning algorithms and

grammar spaces according to their feasibility. This research is significant because it

provides a method that can be used to analyze realistically sized natural language

domains (which is not tractable using Niyogi and Berwick’s model) and is not bound

by the idiosyncrasies of any particular language. Sakas’ model is more abstract and

allows for the setting of simulation parameters that can be used to model a wide

variety of learning environments. Further, it allows analysis of different sources of

learning difficulty, which is not possible using Niyogi and Berwick’s formulation.

 31

The framework outlined in this research does not take into account domains

containing languages in subset-superset relationships. Given any two languages in the

domain a constraint is imposed that guarantees that there is at least one sentence in

each language that is not in the other. The analysis would become much more

complex if subsets were allowed. Superset avoidance or recovery mechanisms would

need to be built into the learning algorithms and the cost of these procedures would

not be reflected in the feasibility results of the framework as it is currently

constituted. Learning algorithms exist which are inherently immune to the subset

problem but there are others that are not. Comparisons of the feasibility of algorithms

in those two groups are very important but would not be accurate because either (1)

the learnability of algorithms susceptible to the superset hypothesis might be in

question or (2) the cost of superset avoidance or recovery might not be reflected in

the feasibility results. Suppose two algorithms are being compared. One algorithm,

call it A, is probabilistic and can escape from a superset hypothesis (e.g., NPL). The

other algorithm, say B, cannot escape from a superset hypothesis (e.g., error-driven

with random grammar selection). Algorithm B could have better feasibility statistics

as compared to algorithm A, which on the surface would make it seem like algorithm

B is better than A. What is missing though is that the learnability of algorithm B

should be in question. There is no way to tell from the feasibility results that

algorithm B is susceptible to superset errors. Now suppose that algorithm B was

altered such that it was able to avoid superset hypotheses. Such a mechanism might

require work for the learner that is not accounted for in the feasibility calculations.

 32

Algorithm B might have better feasibility results but in actuality be slower because of

the superset avoidance mechanisms that were added but not accounted for.

1.2.3.3 Modeling the Effect of Cross-Language Ambiguity on Human
Syntax Acquisition

Sakas (2000a; 2000b) presents a computational framework used to model the process

by which human language learners acquire the syntactic component of their native

language. The main focus of this model is to analyze the effect that parametric

ambiguity has on the performance of a learner. Parametric ambiguity occurs when a

sentence is licensed by more than one language. Parametrically ambiguous sentences

are troublesome because they force the learner to choose between at least two

different sets of parameter values, only one of which is correct. If the wrong one is

chosen learning will be prolonged and in the worst case will not happen at all. The

Sakas model judges a learner according to its feasibility or the amount of work

(number of sentences) it takes to converge on the target language.

The number of input sentences consumed is derived by a Markov analysis. A Markov

chain is set up such that states represent the number of parameters that have been set

(as opposed to representing grammars, see discussion above) and state transitions

represent the probability that the learner will set some number (w) of new, currently

unset, parameters. The expression rate (e) is the average number of parameters

expressed per sentence. The effective expression rate (e’) is the average number of

unambiguously expressed parameters per sentence. For an unambiguous domain,

 33

Sakas shows that the probability that w new parameters will be adopted is

hypergeometrically distributed. He folds the effective expression rate, the proportion

of unambiguously set parameters, to the total number of parameters expressed. The

use of the number of set/unset parameters together with the effective expression rate

are the principal mechanisms used for formulating transitional probabilities between

states. The function that calculates the expected number of input sentences uses the

transition probabilities.

An example analysis was done on the Structural Triggers Learner (STL). The specific

STL variant used was called the Waiting STL. The main strategy for the Waiting STL

is that it should only learn from unambiguous input. Any ambiguous input sentences

that are encountered are ignored (at least from the perspective of learning). For the

waiting STL, ambiguity has its largest effect during the early stages of learning. STL

performance improves dramatically after the early stages are done. More parameters

are set so there is less ambiguity as learning progresses. Sakas showed that the STL is

particularly susceptible to ambiguity because it will only learn from sentences that are

unambiguous. However, results also showed that increasing the total number of

parameters that need to be set had only a small effect on the amount of work that

needed to be to be done. This is in strong contrast to the TLA model in which the

amount of work needed to achieve the target grammar rose exponentially in the

number of parameters that needed to be set. Subsequent research (summarized in

Fodor and Sakas, 2004) attempts to keep the benefits of the STL scalability, while

 34

speeding up learning by loosening the strict implementation of the Parametric

Principle (see discussion in the next section).

Sakas also puts forth the idea that this model should be used in conjunction with a

computational psycholinguistic study and a computer simulation. Comparison of the

TLA and the STL most probably points to the fact that different models of acquisition

are affected differently by different distributions and amounts of ambiguity. A

computational psycholinguistic study should be used to determine the “shape of

ambiguity” of natural languages, and see if the domain of languages used by the

computer model of learning match those of the distribution of ambiguity in natural

language. A computer simulation will empirically test the learner in question to

establish its feasibility.

It is important to note that the domains used for the simulation of learners in all the

studies cited above avoided subset-superset languages by removing all such

relationships prior to the beginning of the simulation run. It is part of my ongoing

research (with Sakas & Fodor) to investigate to what extent parametric ambiguity is

relevant to the subset problem. It is an open question how large a cost a learner may

incur in a domain with subset/superset relationships and how the amount of

parametrically ambiguous input is related to that cost. Knowledge of the distribution

of parametrically ambiguous input due to a subset/superset relationship in conjunction

with the cost of subset/superset specific logic could be valuable information when

determining the feasibility of a learner that incorporates subset/superset logic.

 35

1.2.3.4 Model Comparisons

Research was done that compares different search heuristics used to guide learning in

the principles and parameters framework (Sakas and Nishimoto, 2002; Sakas, 2003;

Fodor and Sakas, 2004). The heuristics are judged according to their feasibility (the

time/effort, measured in terms of number of input sentences required, it takes to attain

the target grammar). The heuristics used in these studies were partitioned into four

different basic algorithms and their variants: Error-Driven Blind Guess (EDBG),

Triggering Learning Algorithm (TLA) (Gibson and Wexler, 1994), the Variational

Learner (VL)14 (Yang, 2002) and the Structural Triggers Learner (STL) (Fodor,

1998b; Sakas and Fodor, 2001). The heuristics can further be divided into two main

categories: those that guide the learner according to a can parse/cannot parse outcome

and those that guide the learner according to parse tree information. The EDBG, TLA

and VL exclusively use can parse/cannot parse information while the STL variants

make use of both.

In Sakas and Nishimoto (2002), results on a small 4 parameter domain, showed

unsurprisingly, that the STL strategies (Strong-STL, and the Nearest Grammar

Guessing-STL variants) which availed themselves of a maximum amount of

structural information which is obtained through a full parallel parse of every input

14 The variational learner is a variant of Yang’s Naïve Parameter Learner (NPL).

 36

sentence. The Waiting-STL, which discards all sentences that contain ambiguous

information, performed the worst of all the STL variants.

The Variational Learner (Yang, 2002), which uses statistics over a can parse/cannot

parse outcome performed even worse than the STL models. Sakas & Nishimoto note,

however, that the Variational Learner works well at the outset of learning in a highly

ambiguous domain. In conclusion, they conjecture that the best approach might be a

combination of the two main heuristics: Use a statistical heuristic such as the VL in

the early stages of learning and then switch to a structural heuristic such as the STL

when statistical learning starts to deteriorate. The STL operates most efficiently after

some parameters have been set. By using the VL in the beginning and the STL from

then on, the performance of the learner can be maximized for the duration of the

simulation. 15

Again, for all of the studies discussed in this section, none of the search heuristics

directly address the subset problem. Instead, simulations were implemented by

removing all supersets of the target language prior to the each simulation run.

Leaving the superset languages in the domain, and studying the performance of

strategies that actively apply the Subset Principle during the course of learning, is the

focus of this thesis.

15 Fodor (1998a) has a similar model to the Variational Learner, the Parse Naturally STL, which counts
how often a parameter value was used in a successful parse and picks a grammar based on those
counts. Though untested by Sakas and Nishimoto, Sakas is optimistic that this model might well
perform best of all the STL variants (Sakas, pc).

 37

1.3 The Subset Principle

The Subset Principle is a rule that learners can follow that would allow them to avoid

hypothesizing languages that are supersets of the target language. Explicit

formulation of the Subset Principle is generally credited to Berwick (1985) and

Manzini and Wexler (1987) and Wexler and Manzini (1987). However, to the best of

my knowledge, Gold (1967) was the first to mention problems related to learning

classes of languages, from positive data only (see section 1.1.1 Identification In The

Limit), and Angluin (1980), among many others, continues investigation in Gold’s

paradigm in which the problem of “overgeneralization” remains a central concern.

While the Subset Principle is generally accepted and deemed relevant by a large

segment of the research community, there are those who believe that subset languages

do not exist in the domain of natural (human) languages, and that the Subset Principle

is not a necessary aspect of human language learning. This section will start with a

discussion of the research by Berwick (1985) and Manzini and Wexler (1987) in the

formulation of the Subset Principle. Next, some research that argues against any need

for the Subset Principle will be reviewed. Finally, research by Fodor and Sakas

(2005) will be reviewed. Their article goes into problems that arise up if the Subset

Principle is faithfully obeyed by a learning algorithm that has psychocomputationally

plausible restrictions on what (and how much) can be retained in the memory store.

 38

1.3.1 Subset Principle Background

1.3.1.1 Berwick

Berwick (1985) states that the Subset Principle is necessary (though not sufficient) for

identifiability from positive evidence. He states the Subset Principle informally as

follows: “Briefly, the Subset Principle states that learning hypotheses are ordered in

such a way that positive examples can disconfirm them.” If the hypotheses were

ordered in some other way then positive only evidence would not be enough for the

learner to attain the target grammar. The learner could hypothesize a superset before

the target and the desired final acquisition of the actual target language would never

take place. All sentences would be grammatical with respect to the superset language

and the learner would never change its hypothesis and consequently never converge

on the target language, hence the need for the Subset Principle. Berwick’s

formulation of the Subset Principle was based on research done by Gold (1967) and

Angluin (1980).

Berwick also mentions that the problem of determining whether one language is a

subset of another language is in the general case undecidable. (Though Joshi (1994)

has shown that it is decidable over the tree sets of context-free grammars.) This is

relevant because the learner needs to know when to apply the Subset Principle. If the

 39

learner could not determine subset/superset relationships then acquisition cannot be

guaranteed. Berwick (1985, p 237) concludes that either the ordering of languages

was determined as humans developed as a species due to natural selection (i.e., it’s

innate, also see discussion in Fodor & Sakas (2005) section 2) or that the calculations

are tractable due to constraints on natural languages such as a limited depth of

recursion.16

1.3.1.2 Manzini and Wexler

Manzini and Wexler argue for the existence of subset languages in the natural

language domain and the implications of their existence for a language learner

(Manzini and Wexler, 1987; Wexler and Manzini, 1987). They construct examples

within binding theory to show that the existence of subset languages is linguistically

reasonable. The Subset Principle is defined and used as the main component to drive

learning in a domain that contains subsets.

Manzini and Wexler use Binding Theory to give examples of subset languages. They

assume that Principles A and B as defined by Chomsky (Chomsky, 1980; Chomsky,

1981; Chomsky, 1982) hold. It is shown that different values of the governing

category parameter for anaphors generate languages that are subsets of one another.

For example, assume that value 1 of the governing category parameter says that the

16 Berwick cites research by Wexler and Culicover (1980) showing that a transformational grammar is
learnable from input sentences with a maximum of two embedded clauses.

 40

governing category for an anaphor a must contain a, a governor for a, and a subject.

Also, assume that value 2 of the governing category parameter says that the

governing category for an anaphor a must contain a, a governor for a, and an

inflection. Given other principles of Government and Binding Theory, it follows that

all categories with an inflection are categories with a subject, but not all categories

with a subject are categories with an inflection. So with respect to the distribution of

anaphors, the languages that have value 1 of the governing category parameter are a

subset of the languages that have value 2 of the governing category parameter. The

examples given by Manzini and Wexler contain more values for the governing

category parameter but the idea is the same. The inclusion hierarchy described for

anaphors is also shown for pronominals except that the subset/superset relationships

go in the opposite direction.

The Subset Principle is necessary for learning a parameter value when the languages

generated by the parameter are in an inclusion hierarchy. If the languages are not in

an inclusion hierarchy then some other method can be used to select the parameter

value. M&W define the Subset Condition which states that for any two values pi and

pj of a parameter p, either the language generated by the value pi is a subset of the

language pj or vice versa. The values of the other parameters remain fixed. If the

Subset Condition holds for a parameter then the learner must use the Subset Principle

to select the value of that parameter. If the Subset Condition does not hold then some

other method should be used to select the value of that parameter.

 41

Manzini and Wexler also define another principle, the Independence Principle. In

M&W's framework, both the Independence Principle and the Subset Condition must

hold if the Subset Principle is to be invoked successfully. The Independence Principle

states that if the language generated by value pi of parameter p is a subset of the

language generated by value pj of parameter p that relationship will always hold

regardless of the values of any of the other parameters (as long as the values of the

other parameters remain fixed when comparing the subset and superset values of p).

For example, if 011 is a subset of 111 with p1 being a subset parameter then we can

also say that 001 is a subset of 101. Notice that the values of the other parameters

remain constant when comparing values of the subset parameter. M & W do not make

any statements about what happens if other parameters are allowed to vary at the

same time as the subset parameter (but cf. Fodor and Sakas (2005) definition of

independence). The Independence Principle is important because it allows the learner

to use the Subset Principle to set the values of parameters individually.

This research was important because it gave examples of languages that were subsets

of one another and how a learner could learn in such a domain. Much research has

been done in response to the ideas put forth. Some research questions the existence of

such languages (Kapur, Lust, Harbert et al., 1993) while other research supports it

(Wexler, 1993). The generally prevailing opinion seems to be that some but not all

natural language parameters create subset-superset relations. It is an open area of

research to create learners that abide by the subset principle. Major learning models

have been created since this work in 1987, but the authors only mention the existence

 42

of subset languages and then set aside the problem (Gibson and Wexler, 1994; Fodor,

1998b). The implication of creating a learner that does abide by the Subset Principle

has been addressed, though, by Fodor and Sakas (2005).

1.3.2 Arguments Against the Subset Principle

1.3.2.1 Becker

Becker (2006) puts forth an argument against using the Subset Principle for learning

raising and control verbs. The reasons for this are that (1) ambiguous verbs could

cause the learner to incorrectly set the verb class parameter and that (2) children seem

to learn in a way that assumes the wrong default parameter value needed for using the

Subset Principle. It is suggested that a probabilistic approach using cues for raising

and control verbs is a better learning strategy than the Subset Principle.

The significance of this research is that if it is correct it gives support to the

probabilistic learning paradigm (e.g., Yang, 2002) over the triggered learning

paradigm (e.g., Gibson and Wexler, 1994; Fodor and Sakas, 2004). There may be

ways around it such as along the lines suggested by Gibson & Wexler (1994) for the

verb second parameter. That is, setting the marked value of the verb class parameter

may be delayed for a period of time, which would allow the triggered paradigm to

work.

 43

1.3.2.2 MacLaughlin

MacLaughlin (1995) critically examines the need for the Subset Principle in first

language acquisition as a means of determining its applicability to second language

acquisition. MacLaughlin concludes that the subset learning problem, which the

Subset Principle is intended to solve, does not arise in the first place. She argues that

the Subset Principle does not apply in situations in which it is standardly assumed to

apply. Basically, her arguments involve reorienting the linguistic descriptions of

syntactic parameters. For example, the Case Adjacency parameter is related to the

adjacency of a verb to its object. A side effect of the case adjacency parameter is to

regulate where adverbs can appear within a verb phrase. A grammar with strict

adjacency such as English does not allow an adverb to appear between a verb and its

direct object. French on the other hand does not have strict adjacency and it does

allow an adverb to appear between a verb and its direct object. A grammar without

strict adjacency can parse sentences in which verb and object are strictly or not

strictly adjacent so the Case Adjacency parameter can be thought of as a subset

parameter. MacLauglin makes the argument that the effects just described would be

better explained in terms of verb raising. In French, when the verb raises the adverb

will appear between the verb and its direct object in the surface form. If the verb does

not raise, such as in English, the adverb will appear to the left of it in the surface

form. The verb raising puts the English and French grammars in an intersecting

relationship as opposed to a subset/superset relationship. She also gives similar

 44

arguments for the Pro-drop parameter and the Bounding node parameter.

MacLaughlin also brings up several points that she believes to be problems with the

Parameterized Binding Theory of Manzini and Wexler (1987). These problems are

similar in spirit to her arguments concerning the Case Adjacency parameter, the Pro-

drop parameter, and the Bounding Node parameter.

1.3.3 Subset Principle Compliance

Fodor and Sakas (2005) discuss how the Subset Principle (SP) could be implemented

so that it is feasible both linguistically and psychologically. A major point uncovered

by their research is the fact that incremental learning and SP are incompatible. They

also discuss incompatibility of the Single Value Constraint and SP. In addition, some

new learning models that are faithful to SP are presented and problems with those

models are discussed.

1.3.3.1 The Shifting Problem

Previous research (Clark, 1992) states that SP is not a solution to avoiding superset

errors because of a 'shifting' problem between parameters. The following language

domain, as depicted by Fodor & Sakas (2005, p 530) shows an example of Clark's

original example of shifting problem.

 45

Figure 1: Shifting problem.

The problem occurs when the learner hypothesizes 10 and the target is 01 (or vice

versa). Clark assumes that the learner abides by the Single Value Constraint which

says that the learner can only change one parameter at a time keeping the other

parameters fixed. The SVC is psychologically attractive because it models a gradual

time course. Given SVC, there is no way for the learner to move from 10 to 01. From

10, the learner can only move to 11, which would cause a superset error assuming the

target is 01. Fodor and Sakas (2005) argue that the problem is not SP per se, but

rather Clark’s strict application of the SVC. If the learner were allowed to update two

parameters at the same time when required to do so by a stronger constraint like SP it

could move from 10 to 01.

Another issue with moving from 10 to 01 is that the learner must give up a marked

value (i.e., the first parameter goes from 1 to 0). Fodor and Sakas refer to this as

retrenchment – for the learner to be safe from a fatal superset hypothesis, the learner

must always start from 'scratch'. In the case of parameters, this means resetting

 46

parameters to their least marked values.17 Using retrenchment and giving up the SVC

would allow the learner to move from 10 to 01. Learning would proceed as follows:

The learner starts at 00 and then hypothesizes 10 due to some input. 10 is then

disconfirmed due to the next input sentence s. Assume also that s is not in the

language generated by 00. At this point the learner retrenches to the least marked

grammar that licenses s, which is 01, and learning is complete. In previous research

SVC is given precedence over SP and that should not necessarily be the case. Fodor

and Sakas say that if SP is used it should take precedence over all other constraints.

Obeying SVC is fine as long as it does not affect application of SP.

1.3.2.2 The Simple Defaults Model

Following M&W, Fodor and Sakas describe a learning model called the Simple

Defaults Model (SDM). The SDM was designed to add a level of prioritization to

grammar hypotheses so that SP is always obeyed. In the SDM all parameters have a

default value that is a subset of its marked value. Each parameter does not necessarily

designate a subset/superset relationship, but if it does, the marked value must be a

superset of the default or unmarked value. The SDM also requires that the only

subset/superset relationships that exist in the language domain are exactly those that

come about from changing an unmarked value of a subset/superset parameter to a

17 Of course this assumes less than perfect information about the correct parameter settings for the
target language. If the learner were able to determine absolutely that a marked parameter value was
necessary to parse an input sentence (e.g., Strong-STL), then the learner would not need to retrench to
the unmarked value of that parameter. So far this strong form of the parametric principle (Sakas and
Fodor, 2001) has proven elusive under reasonable psychologically plausible computational constraints.
However, see Sakas & Fodor (in prep.) for re-examination of the issues.

 47

marked value. In addition, the default value and the marked value of a parameter must

never reverse a subset/superset relationship over all combinations of the other

parameter values, even if they are varying at the same time. This is Fodor and Sakas’s

variant of M&W's Independence Principle.

1.3.3.3 The Ordered Defaults Model

A variant of the SDM is the Ordered Defaults Model (ODM). The ODM is the same

as the SDM except that the parameters are ordered in some manner. This ordering is

necessary (but not sufficient) for a learner to succeed when a language domain does

not respect the Independence Principle. In this case, the SDM would be susceptible to

superset errors while the ODM would not be susceptible due to the ordering of

parameters. The following language domain, as depicted by Fodor & Sakas (2005, p

526) is an example of a language domain that is learnable by the ODM but not the

SDM.

Figure 2: Example language domain learnable with ODM but not SDM.

 48

The learner begins at grammar 00 and the target is grammar 10. The SDM would be

susceptible to superset errors in this language domain because it does not have access

to the knowledge that 01 is a superset of 10. From 00, and on receiving input t, the

SDM could set the marked value of parameter p2 and cause the learner to hypothesize

01. This is a superset error. In contrast, the ODM would not be allowed to set the

marked value of p2 before p1. The ordering of parameter values by the ODM makes

this language domain learnable. However, both the SDM and the ODM will fall prey

to Clark’s shifting problem if the SVC is strictly enforced (because retrenchment on

p1 from 10 to 01 is necessary when 01 is the target).

1.3.3.4 Effects of Incremental Learning

No memory for past inputs makes a learner susceptible to chronic undergeneralization

errors. Undergeneralization means selecting a language that is smaller than the target.

An undergeneralization error is the opposite of an overgeneralization or superset

error. Even if the learner does receive an input that triggers a superset language close

to the target, it still runs the risk of falling right back into a subset language on future

inputs. The learner will undergeneralize with a high frequency because (given an

incremental learning framework) it can only use the current input sentence to select

the next language, and it must pick the smallest language compatible with that input

(Fodor & Sakas, 2005). If the learner were allowed memory for past inputs this

situation could be mediated because the smallest language compatible with several

(or many) inputs is likely to be larger than the smallest language compatible with the

 49

single current input sentence.

Fodor and Sakas also suggest modularizing the grammar as another solution to the

undergeneralization problem. Using this solution the parameters would be grouped

into different modules such as case, theta, binding, bounding, etc. The learner would

only be allowed to reset parameters that are located in the same module. The effect of

this would be to limit the amount of retrenchment that takes place which would in

turn increase the speed of acquisition. Although attractive from the point of view of

SP, it is probably not a linguistically viable option as parameters appear to interact

across modules (see discussion in Clark, 1992). It seems that undergeneralization

errors due to retrenchment can be just as harmful as superset errors.

1.3.3.5 Subset-free Triggers

Fodor & Sakas (2005) argue (though do not mathematically prove) that unless some

other solution for excessive retrenchment can be found, the language domain for an

incremental learner must be such that every language L contains at least one sentence

such that L is a smallest language containing that sentence. This sentence is referred

to as a subset-free trigger (sft). All languages in a language domain must contain a

subset-free trigger in order for that language domain to be learnable.

 50

1.4 The Simulation Platform

A simulation platform for first language acquisition was developed. The platform

contains approximately 6000 lines of C++ code and can be run in either a Windows

or Linux environment. Virtually all of the simulations are run on a Linux machine.

The platform was designed to be easily extensible. New learners are created by

deriving from an abstract base learner class and adding a few lines of code to the

main Simulation class. The program output is in both tab-delimited format that can be

easily read into an application for analysis (e.g., Mathematica, Microsoft Excel, etc.)

or XML format which, in combination with XSL and CSS stylesheets, can be viewed

using a web browser. Two other utility programs were also written in ASP.NET/C#.

These utilities are used to query the language domain lattice of languages in order to

assist in analysis of data and debugging.

1.4.1 CoLAG Domain

The simulation platform was designed to use the CUNY Computational Language

Acquisition Group (CoLAG) domain (Fodor, Melnikova and Troseth, 2002; Sakas,

2003). The CoLAG domain was created in order to facilitate simulation research as

opposed to standard learnability models which use proofs to give results. The CoLAG

domain is based in the principles and parameters framework (Chomsky, 1981). It is a

 51

database of word order patterns for 3072 abstract languages. The word order patterns

were designed to reflect a wide range of natural language syntactic phenomena. There

are 13 parameters or points of variation between languages in the domain. Learners

that run on our simulation platform are presented with grammatical sentences from

the target language (which can be any of the 3072 languages). All sentences of the

target language are equally likely to occur. The goal of the learner is to hypothesize

the target language given the input sentences.

1.4.2 Simulation Program

The simulation program was designed to facilitate easy creation of new learners.

Inheritance and polymorphism were used extensively throughout the program as a

means to isolate learner specific logic and factor out common logic. New learner

creation essentially boils down to writing one new class.

All learners must be derived from the abstract base class Learner. The Learner class

models the basic structure of what all learners running in our simulation framework

must provide. All learners must be able to set their first hypothesis according to their

given algorithm. A learner must be able to reset itself for the next trial. Finally, a

learner must be able to pick its next grammar hypothesis according to its given

algorithm. The PickNextHypothesis() procedure is where the bulk of the logic that

makes each learner unique resides. Figure 3 contains the definition of the base learner

class. All class and procedure definitions are written in pseudocode (see Appendix B

 52

– Pseudocode Guide for pseudocode descriptions). Some programming details from

the actual implementation are left out in order to make the code more readable.

The simulated learner is trained on each of the 3072 languages in the CoLAG

domain. Each of those languages is run for a given number of trials, typically 100. All

learners use the Simulation::Run() procedure to drive processing. The Run procedure

provides the main processing loop for the simulation. The Run procedure is defined in

Figure 4.

ABSTRACT CLASS Learner
CLASSPROCEDURES
 VIRTUAL Reset();

 VIRTUAL SetFirstHypothesis();
 VIRTUAL PickNextHypothesis();
ENDCLASSPROCEDURES

CLASSVARIABLES

 DECLARE HypoGrammID;
 /* HypoGrammID: Current hypothesis grammar ID.
 ENDCLASS
ENDCLASS

Figure 3: Learner base class.

 53

The global variables that the program uses are listed in Figure 5. These variables are

accessible from anywhere in the program.

PROCEDURE Simulation::Run ()

DECLARE Learner;

/* Learner: Stores the instance of the simulated learner. */

Learner Simulation.CreateLearner();

FOR target IN targetLangs DO
 Environment.SetupTargetLanguage(target, LanguageDomain);
 Oracle.SetUp(target);

 FOR i FROM 1 TO NumTrials DO
 Learner.Reset()
 SearchSpace.ResetForTrial();

 Learner.SetFirstHypothesis();

 WHILE NOT Oracle.AttainedTarget(Learner.HypoGrammID) DO

 Learner.PickNextHypothesis();
 ENDWHILE

 ENDFOR;
ENDFOR;

ENDPROCEDURE;

Figure 4: Main processing loop.

 54

Other procedure names appear in the Run procedure code and in the derived learner

overrides of PickNextHypothesis. Descriptions of all of these procedures are given in

Appendix A – Miscellaneous Procedure Descriptions.

The new derived learner class must provide its own implementations of the Reset(),

SetFirstHypothesis(), and PickNextHypothesis() procedures. For example, a learner

that simply chooses a hypothesis grammar at random would be defined as in Figure 6

through Figure 9.

DECLARE Simulation, SearchSpace, Environment, Oracle, LanguageDomain,
 Lattice;

/* Simulation: Drives the simulation program. The Run
 procedure of this class actually executes the simulated
 learner.
 SearchSpace: All grammar hypotheses currently available to the
 learner.
 Environment: Encapsulates the learning environment. The target
 language sentences are stored here.
 Oracle: Responsible for deciding when processing should
 stop. Stores the target grammar. Stores grammars that
 are weakly equivalent to the target grammar. Stores
 supersets of the target grammar.
 LanguageDomain: All languages in the CoLAG domain.
 Lattice: The lattice of all subset-superset relationships in the
 language domain.
*/

Figure 5: Global variables.

 55

CLASS ExampleLearner INHERITS Learner
 CLASSPROCEDURES
 Reset();
 SetFirstHypothesis();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 ENDCLASSVARIABLES
ENDCLASS

Figure 6: An example learner class.

PROCEDURE ExampleLearner::SetFirstHypothesis()

/* Choose a grammar hypothesis at random. */
HypoGrammID LanguageDomain.PickRandomGrammar();

ENDPROCEDURE;

Figure 7: Setting the first hypothesis for the example learner algorithm.

PROCEDURE ExampleLearner::Reset()

/* No reset code is needed for this particular learner.
*/

ENDPROCEDURE;

Figure 8: Resetting the example learner for a new trial.

 56

The example learner override of PickNextHypothesis gets an input sentence from the

linguistic environment and checks to see if the current grammar hypothesis can parse

it. If it can parse the input sentence then the current hypothesis is retained otherwise a

new grammar hypothesis is chosen at random from the language domain. It should be

noted that this example learner is susceptible to superset errors because it does not

obey SP when choosing a new grammar hypothesis.

PROCEDURE ExampleLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;
/* Sentence: The current input sentence. */

/* Get the next input sentence from the linguistic environment. */
Sentence Environment.GetAnInput();

/* If current hypothesis can parse then just retain it. */
IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

/* Choose a grammar hypothesis at random. */
HypoGrammID LanguageDomain.PickRandomGrammar();

ENDPROCEDURE;

Figure 9: Example learner algorithm.

 57

2 Partial Ordering Learners

2.1 Justification For Adding Memory For Disconfirmed Grammars

The learners being created in the current research make a hypothesis about the target

language after each individual input sentence. No negative or disconfirming evidence

about the current hypothesis grammar is given to the learner. If a learner in this

environment were to hypothesize a superset of the target language then it would be

impossible for convergence on the target grammar to take place due to the absence of

negative evidence. We are investigating learners that use the Subset Principle (SP) to

avoid any superset hypotheses - overgeneralization. Faithful application of SP solves

the overgeneralization problem but can create a chronic undergeneralization problem.

The learner can become too conservative and possibly never hypothesize larger target

languages. One goal of the current research is to incorporate memory for past

grammars into the learner in order to avoid this undergeneralization problem. Adding

memory to the learner will decrease the search space by eliminating languages in the

domain as learning progresses and remedy the undergeneralization problem. But it

remains an open question how much memory would be needed to produce a

significant decrease (if any) in the amount of work necessary for the learner to attain

the target language. For example, for a language domain of 30 parameters,

eliminating one grammar at a time may not have much of an effect on the efficiency

of the learner because the search space is so large.

 58

2.2 General SP Lattice Learner

Gold (1967) posited a total ordering of grammar hypotheses with respect to

subset/superset relationships to guarantee that the learner will not hypothesize a

superset of the target. However, it is computationally unrealistic as a model for child

language learning. If learners running on our simulation platform were to use a total

ordering of grammar hypotheses then it would be necessary for them to hypothesize

virtually all 3072 languages in the domain for those target languages that are located

at the end of the ordering. The total ordering of grammar hypotheses guarantees that

the learner will not hypothesize a superset of the target but it is too inefficient to be

considered from a psychocomputational point of view (though see Fodor & Sakas

(2005) for discussion). One possible solution to this problem would be to relax the

restriction of a total ordering of grammar hypotheses to a partial ordering of grammar

hypotheses.

The General SP Lattice Learner (Lattice learner) uses a lattice or partially ordered set

of languages (POSET) to navigate the search space (Fodor, Sakas and Hoskey, 2007).

The partial ordering of the language domain lattice (LD lattice) is based on the

subset-superset relations of the languages in the domain. Throughout this paper, we

envision superset languages being “above” their subsets in the lattice. The term

“smallest” is also used to describe certain languages in the lattice. A smallest

language is a language that does not contain any subsets. There are many smallest

 59

languages in the CoLAG domain. Let SL be the set of smallest languages in the

CoLAG domain. When the Lattice learner has to choose a new hypothesis it must

make that selection from SL. All the languages in SL are smallest languages so the

learner by definition is abiding by SP when it chooses from SL. Whenever the current

hypothesis is disconfirmed that language is removed from the LD lattice and SL. The

parents of that node may then be added to SL. The parents of the disconfirmed

language cannot be blindly added though. All children of the parents must be checked

to see if they have any other children to make sure they are in fact smallest languages.

If the parents do have other children then they cannot be added to SL. This check

guarantees that all languages in SL are smallest languages. The removal of languages

from SL and the LD lattice is effectively giving the learner memory for past

grammars. Given that all the learners are error-driven, previously hypothesized

languages are effectively disconfirmed and should not be hypothesized again.

Figure 10: Remove language 1 from SL and the lattice.

 60

CLASS SPLatticeLearner INHERITS Learner
 CLASSPROCEDURES
 Reset();
 SetFirstHypothesis();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 DECLARE Lattice;
 /* Lattice: Contains all the subset-superset
 relationships of the grammars. */
 ENDCLASSVARIABLES
ENDCLASS

Figure 11: SPLatticeLearner class.

 61

2.3 SP Lattice Learner Variants

All variants of the lattice learner abide by SP and use the lattice to help guide

hypothesis selection. The parser is also used by each learner to varying degrees. See

Fodor (1998a) and Sakas & Fodor (2001) for a detailed description of using the parser

during hypothesis selection.

PROCEDURE SPLatticeLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis. */

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

Lattice.Remove(HypoGrammID);

CandGrammID Lattice.PickRandomGrammarFromSmallestLanguages();

IF Licensed(CandGrammID, Sentence)
 HypoGrammID CandGrammID;
 RETURN;
ENDIF;

Lattice.Remove(CandGrammID);

HypoGrammID Lattice.PickRandomGrammarFromSmallestLanguages();

ENDPROCEDURE;

Figure 12: Lattice learner algorithm.

 62

The SP Lattice Decode learner variants use the parser initially for each hypothesis

selection but will ultimately be guided by SP constraints before the next hypothesis is

selected. The Integrated learner uses the parser in conjunction with the lattice to guide

hypothesis selection. The Flashlight variant of the SP Lattice learner uses previous

hypothesis selection to help guide the current hypothesis selection. The Retrench

learner uses the parser to find a starting point in the lattice for hypothesis selection. A

detailed description of each of these learners will be given in the sections that follow.

2.3.1 Parallel Parsing Vs. Serial Parsing

From the perspective of computational load on the parser, we can separate parsing

into two categories, parallel parsing and serial parsing. Parallel parsing means that the

parser generates every possible parse of a given sentence. The parser is given the

input sentence and it will continue processing until all possible parses are generated.

It is unlikely that human language acquisition entails using parallel parsing because it

is thought to be too computationally demanding a task. Serial parsing means

generating one parse by selecting at choice points (if there are any) according to a

given algorithm (e.g., select a path at random). Serial parsing does not generate as

much information as parallel parsing does but it is much more feasible

computationally.

 63

2.3.2 Decoding

Decoding can be thought of as an intelligent version of serial parsing. The main

difference between serial parsing and decoding is that decoding actively generates a

parse while serial parsing does not. Decoding is the process of both parsing the

current input sentence with the current grammar and if necessary patching additional

unused treelets into the current grammar in order to complete the parse. Any new

treelets are added to the parse tree at a point where parsing failed. The pool of treelets

that the parser draws from is supplied by the supergrammar (ultimately from UG).

Decoding makes it possible for the learner to generate a valid parse of the current

input sentence when a normal serial parse would not. The grammar generated by

decoding may not be the target but it will at the very least parse the current input

sentence. Some learners may not use the generated grammar due to SP constraints but

if they do then they will have added treelets to the current grammar that are a

necessary part of the target grammar.

2.3.3 Decode Learner

The SP Lattice Decode Learner (Decode learner) uses decoding to guide hypothesis

selection. The current input sentence is parsed with the current grammar. If the

current grammar can parse the current input sentence then it is retained. Otherwise,

the learner chooses one parse of the current input sentence at random and checks for

 64

membership of the associated grammar in SL. If it is in SL then that grammar

becomes the current hypothesis. Otherwise the learner retains the previous

hypothesis.

CLASS SPLatticeDecodeLearner INHERITS SPLatticeLearner
 CLASSPROCEDURES
 Reset();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 ENDCLASSVARIABLES
ENDCLASS

Figure 13: SPLatticeDecodeLearner class.

PROCEDURE SPLatticeDecodeLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis. */

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

CandGrammID GetRandomParseGrammarID(Sentence);

IF Lattice.IsAMemberOfSL(CandGrammID) THEN

Lattice.Remove(HypoGrammID);
 HypoGrammID CandGrammID;
 RETURN;
ENDIF

ENDPROCEDURE;

Figure 14: SP Lattice Decode learner algorithm.

 65

It should be noted that the underlying implementation of the learner may generate all

the grammar IDs of a given sentence in parallel but it is not performing an actual

parallel parse. From a linguistic perspective this does not constitute a parallel parse of

the input sentence. The theoretical learner that the implementation is modeling does

not have knowledge of any grammars generated in parallel. Choosing one grammar

ID at random from the set of grammar IDs that can parse the input sentence is one

way of implementing a theoretical serial parse. As long as the implemented learner

does not use the existence of the other grammar IDs to help guide hypothesis

selection in any way it is still a serial parse from the perspective of the theoretical

learner being modeled.

2.3.4 Decode Favor Unmarked Learner

This SP Lattice Decode Favor Unmarked learner (Decode Favor Unmarked) variant

is similar to the Decode learner. The only difference occurs during the decoding

process. Instead of choosing treelets at random this learner will choose treelets

according to their markedness. A marked value is always a superset of an unmarked

value although some parameters do not control subset/superset relationships. This

learner will always choose an unmarked value over a marked value. Choosing

unmarked values will increase the chance of generating an SL grammar during the

decoding process.

 66

CLASS SPLatticeDecodeFavorUnmarkedLearner INHERITS SPLatticeLearner
 CLASSPROCEDURES
 Reset();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 ENDCLASSVARIABLES
ENDCLASS

Figure 15: SPLatticeDecodeFavorUnmarkedLearner class.

PROCEDURE SPLatticeDecodeFavorUnmarkedLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis. */

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

CandGrammID PerformSerialParseChoosingUnmarked (Sentence);

IF Lattice.IsAMemberOfSL(CandGrammID) THEN

Lattice.Remove(HypoGrammID);
 HypoGrammID CandGrammID;
 RETURN;
ENDIF

ENDPROCEDURE;

Figure 16: SP Lattice Decode Favor Unmarked learner algorithm.

 67

2.3.5 Integrated Learner

This SP Lattice Integrated learner (Integrated learner) is similar to the Decode learner

since decoding also drives hypothesis selection but it differs in the way it constructs a

parse during decoding. Only treelets that are from SL grammars are available for

patching into the parse tree. Constraining the pool of treelets in this manner

guarantees that a parse generated during decoding will be parsable by an SL

grammar.18 However, there is now a possibility that no parse will be generated during

the decoding process. The SL grammar treelet set is maintained by the supergrammar

so there is no extra computational load. Learner efficiency should increase in

comparison to the decode learners since it no longer relies on random chance to find a

suitable parse, but constructs one (if possible).

18 Note that this guarantee is implementation-dependant. Our implementation prohibits parameter
treelet interaction between treelets drawn from the SL set. Such interactions could conspire in such a
way as to result in a hypothesis language that is actually a superset of one or more SL languages. See
further discussion in section 2.4.2.

CLASS SPLatticeIntegratedLearner INHERITS SPLatticeLearner
 CLASSPROCEDURES
 Reset();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 ENDCLASSVARIABLES
ENDCLASS

Figure 17: SPLatticeIntegratedLearner class.

 68

PROCEDURE SPLatticeIntegratedLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID, SL, ParseGrammIDs, ParseGrammIDInSL;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis.
 SL: Set of smallest language grammar IDs.
 ParseGrammIDs: Set of grammar IDs that can parse the
 current input sentence.
 ParseGrammIDInSL: Set of grammar IDs that can parse the
 current input sentence that are also in SL.
*/

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

Lattice.Remove(HypoGrammID);

CandGrammID GetGrammarWithHighestRewardFromSL();

IF Licensed(CandGrammID, Sentence)
 HypoGrammID CandGrammID;
 RETURN;
ENDIF;

Lattice.Remove(CandGrammID);

SL Lattice.GetSmallestLanguages();

ParseGrammIDs GetParseGrammarIDs(Sentence);

ParseGrammIDInSL SetIntersect(SL, ParseGrammIDs);

IF ParseGrammIDInSL.Empty() THEN

HypoGrammID
Lattice.PickRandomGrammarFromSmallestLanguages();
 RETURN;
ELSE
 HypoGrammID PickRandomGrammarFromSet(ParseGrammIDInSL);
ENDIF

ENDPROCEDURE;

Figure 18: Integrated learner algorithm.

 69

2.3.6 Flashlight

The Flashlight is an add-on to other learners as opposed to a learner itself. The

flashlight is an add-on that can be applied to most of the lattice learners. The

flashlight stores a count, c, for each grammar; c tells how often subsets of that

language have been hypothesized.19 Whenever a new grammar is chosen (abiding by

SP), all of the supersets of that grammar increment their c values by one. Whenever

the learner needs to consider a new hypothesis, it will prioritize its choice by the

highest c value among SL grammars. Choosing hypotheses in this manner is effective

because when a language that is low in the LD lattice is disconfirmed, there is at least

one sentence that is not in the disconfirmed language. There is a chance that this

sentence may be a member of the set difference between the currently hypothesized

language and one of its supersets. The probability of the current sentence being in the

set difference does depend on the distribution of sentences in the language domain

and the shape of the LD lattice. Because of the flashlight, the evidence the learner has

encountered so far will direct the learner towards supersets of previous hypotheses

rather than properly intersecting or disjoint languages. This heuristic encourages the

learner to explore areas of the lattice that have worked well in the past, effectively

implementing a hill-climbing strategy.

19 We call it the flashlight because one can envision shining a flashlight up from the bottom of the
lattice and all grammars that are illuminated have their counts incremented.

 70

CLASS SPLatticeFlashlightLearner INHERITS SPLatticeLearner
 CLASSPROCEDURES
 Reset();
 SetFirstHypothesis();
 PickNextHypothesis();
 GetGrammarWithHighestRewardValueFromSL();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 DECLARE Flashlight;
 /* Flashlight: Holds reward value counts for each
 grammar in the lattice.
 */
 ENDCLASSVARIABLES
ENDCLASS

Figure 19: SPLatticeFlashlightLearner class.

 71

2.3.7 Largest Language Optimal Learner

The goal of implementing SP Lattice LL Optimal learner (LL Optimal learner) was to

create an extremely efficient learner without regard for psychological plausibility, to

serve as a benchmark learner. This learner is similar to a traditional search algorithm.

The learner looks to prune the search space as much as possible with each input

sentence. It essentially operates by pruning the search space from above and

PROCEDURE SPLatticeFlashlightLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis. */

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 Flashlight.Reward(HypoGrammID);
 THEN RETURN;
ENDIF;

Lattice.Remove(HypoGrammID);

CandGrammID GetGrammarWithHighestRewardFromSL();

IF Licensed(CandGrammID, Sentence)
 HypoGrammID CandGrammID;
 RETURN;
ENDIF;

Lattice.Remove(CandGrammID);

CandGrammID GetGrammarWithHighestRewardFromSL();

ENDPROCEDURE;

Figure 20: SP Lattice Flashlight learner algorithm.

 72

searching from below. A largest language set (LL) is maintained by the learner. The

largest language set contains all of the languages in the domain that do not have a

superset. If the current hypothesis fails to parse the current input sentence then the

learner looks to prune the lattice. It does this by parallel parsing the current input

sentence with all the grammars in LL. Any grammars in LL that cannot parse the

current input sentence are removed from the lattice. 20 Crucially, all subsets of those

languages can also be removed since if the supersets cannot parse the current input

sentence, then necessarily all their subsets also cannot. This allows the learner to

remove considerably large chunks of the lattice, resulting in a similarly significant

shrinking of the search space. Next the learner considers the bottom of the lattice and

decodes the current input sentence. This decoding employs treelets that instantiate the

grammars in the new SL set, resulting in a single grammar in SL that can parse the

current input sentence (if one exists); this grammar becomes the current hypothesis.

Otherwise, the learner removes all grammars in SL from the lattice and reconstructs

SL. The new SL is checked against the set of grammars that can parse the current

input sentence. The learner will keep removing grammars and reconstructing SL until

it finds a grammar that can parse the current input sentence. When it does that

grammar becomes the new hypothesis. Since the learner prunes the search space by

performing a parallel parse of the input sentence it is not psychologically feasible. But

as we show in section 2.4 Results and Discussion it serves well as our optimal

learner.

20 Note that serial decoding of the current input won't suffice since the learner needs to know which
grammars don't license the current input and serial decoding gives only a single grammar that can
license the input.

 73

CLASS SPLatticeLLOptimalLearner INHERITS SPLatticeLearner
 CLASSPROCEDURES
 Reset();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 ENDCLASSVARIABLES
ENDCLASS

Figure 21: SPLatticeLLOptimalLearner class.

 74

PROCEDURE SPLatticeLLOptimalLearner::PickNextHypothesis()

DECLARE Sentence, LL, SL;
DECLARE ParseGrammIDs, RemoveGrammIDs, CandGrammIDs;
/* Sentence: The current input sentence.
 LL: Set of largest language grammar IDs.
 SL: Set of smallest language grammar IDs.
 ParseGrammIDs: Set of grammar IDs that can parse the
 current input sentence.
 RemoveGrammIDs: Set of grammar IDs to remove from the
 lattice.
 CandGrammIDs: Set of candidate grammar hypotheses. The
 learner is entertaining the idea of making
 one of these grammars the next hypothesis.
*/

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence) THEN
 RETURN;
ENDIF;

LL Lattice.GetLargestLanguages();
ParseGrammIDs GetParseGrammarIDs(Sentence);
RemoveGrammIDs SetDifference(LL, ParseGrammIDs);

/* Add the previous hypothesis to the set of grammars to remove. */
RemoveGrammIDs.Add(HypoGrammID);

Lattice.RemoveIncludingAllDescendents(RemoveGrammIDs);

/* Recalculate this set since grammar IDs have been removed. */
ParseGrammIDs GetParseGrammarIDs(Sentence);

DO
 SL Lattice.GetSmallestLanguages();
 CandGrammIDs SetIntersect(SL, ParseGrammIDs);

RemoveGrammIDs SetDifference(SL, ParseGrammIDs);

 IF CandGrammIDs.Size() = 1 THEN
 HypoGrammID CandGrammIDs[0];
 ELSE IF CandGrammIDs.Size() > 1 THEN
 HypoGrammID PickRandomGrammarFromSet(CandGrammIDs)
 ENDIF

Lattice.RemoveIncludingAllDescendents(RemoveGrammIDs);

/* Recalc ParseGrammIDs since grammar IDs were removed. */
ParseGrammIDs GetParseGrammarIDs(Sentence);

WHILE CandGrammIDs.Size() = 0

ENDPROCEDURE;

Figure 22: LL Optimal learner algorithm.

 75

2.3.8 Retrench Learner

The Retrench learner operates differently than the other SP Lattice learners. The

Retrench learner is allowed to choose a grammar from anywhere in the LD lattice but

it must retrench back down the lattice until it reaches a grammar that is safe with

regards to superset errors. Retrenchment entails giving up the grammar that the

learner just chose in the lattice in favor of a smaller grammar in the lattice if there is

one (see Fodor & Sakas (2005) for a detailed discussion of retrenchment).

Retrenching may cause the learner to give up the target language at this learning step,

but it is necessary to ensure that the learner abides by SP. The Retrench learner has an

advantage over the other SP lattice learners because it is not constrained to

hypothesize grammars in SL but it is at a disadvantage because it is potentially

susceptible to frequent undergeneralization problems due to the lack of memory;

since SL grammars aren’t deleted the depth of retrenchment (i.e., the amount of

undergeneralization) is not reduced during the acquisition process.

Undergeneralization problems are more likely to arise for the Retrench learner if the

domain ambiguity is high. Domain ambiguity refers to the amount of overlap21

between the sentences of each language in the domain. If there is a large amount of

overlap between languages then domain ambiguity is high. Further discussion is

presented in section 2.4.6. The starting point for retrenchment is determined by

21 Throughout I use the term overlap to refer to the intersection of two sets. The sets may be either
properly intersecting or in a subset-superset relationship.

 76

decoding the current input sentence. Paths are chosen at random when choice points

are encountered during decoding.

CLASS RetrenchLearner INHERITS Learner
 CLASSPROCEDURES
 Reset();
 SetFirstHypothesis();
 PickNextHypothesis();
 Retrench(GrammarID);
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 DECLARE Lattice, CandGrammID;
 /* Lattice: Contains all the subset-
 superset relationships of the
 grammars.
 CandGrammID: A candidate grammar hypothesis.
 The learner is entertaining the
 idea of making this grammar the
 next hypothesis. */
 ENDCLASSVARIABLES
ENDCLASS

Figure 23: RetrenchLearner class.

 77

PROCEDURE RetrenchLearner::PickNextHypothesis()

DECLARE Sentence;

/* Sentence: The current input sentence. */

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 Flashlight.Reward(HypoGrammID);
 THEN RETURN;
ENDIF;

ParseGrammIDs GetParseGrammarIDs(Sentence);

CandGrammID PickRandomGrammarFromSet(ParseGrammIDs);

/* Retrench will actually set the grammar hypothesis. */
Retrench(CandGrammID);

ENDPROCEDURE;

Figure 24: Retrench learner algorithm.

 78

PROCEDURE RetrenchLearner::Retrench(RetrenchGrammarID, Sentence)

DECLARE CurrLatticeGrammID, SubsetGrammIDs, FoundRetrenchGrammar;

/* CurrLatticeGrammID: The current place in the lattice
 where retrenching is taking place.
 SubsetGrammIDs: Set of grammar IDs which are subsets
 of the current place of retrenchment
 in the lattice.
 SubsetGrammID: Loop variable used while iterating
 through the SubsetGrammIDs
 collection.
 FoundRetrenchGrammar : Boolean variable indicating whether
 or not a subset grammar was found
 that the learner can retrench to.*/

CurrLatticeGrammID RetrenchGrammarID;

DO

SubsetGrammIDs Lattice.GetSubsetIDs(CurrLatticeGrammID);
 FoundRetrenchGrammar FALSE;

 FOREACH SubsetGrammID IN SubsetGrammIDs
 IF Licensed(Sentence, SubsetGrammID) THEN
 CurrLatticeGrammID SubsetGrammID;
 FoundRetrenchGrammar TRUE;
 RETURN;
 ENDIF
 ENDFOREACH

WHILE FoundRetrenchGrammar = TRUE

HypoGrammID CurrLatticeGrammID;

ENDPROCEDURE;

Figure 25: Retrench procedure.

 79

2.4 Results and Discussion

Each learner was run on all 3072 languages of the CoLAG domain. 100 trials per

language were run. For each trial, learners were limited to a maximum of 10,000

input sentences. If the learner reached the maximum number of input sentences then

the trial was considered a failure (i.e. the learner did not learn the language on that

trial). The “Avg of 99% values” statistic is used to approximate the worst case

performance of the learner. This value is calculated by taking the average of the 99th

fastest trials for each of the 3072 languages in the CoLAG domain.

Learner Avg
Sentences

for Learned
Trials

Avg of 99%
values for
Sentences

for Learned
Trials

Avg
Parses for
Learned
Trials

Avg of 99%
Values for
Parses for
Learned
Trials

Pct
Learned

Lattice 858.69 1453.63 1588.99 2643.41 100

Decode 2482.54 6290.64 2482.54 6290.64 42

Decode
Favor
Unmarked

454.16 1686.99 454.16 1686.99 26

Integrated 140.43 286.24 140.43 286.24 100

LL Optimal 15.55 58.58 435.55 813.97 100

Lattice w/
Flashlight

900.88 968.28 1669.76 1744.68 100

Retrench 188.17 696.75 585.83 2134.15 95

Table 1: Lattice learner results on CoLAG domain.

 80

2.4.1 LL Optimal Best For Sentences but Not Parses

As expected, the SP Lattice LL Optimal learner (LL Optimal learner) performs the

best of all learners under study when measuring learner efficiency in terms of the

number of sentences consumed, but performs notably worse than the most efficient

psychologically feasible learner, the Integrated learner, in terms of the number of

parses required. This learner is optimal in the sense that it is free to aggressively

prune the search space and drastically reduce the number of languages that can be

hypothesized. This pruning radically reduces the number of input sentences required

but not the number of parses. The LL Optimal learner took three times as many parses

as the Integrated learner took. When encountering an input sentence that the current

hypothesis grammar can't parse, the LL Optimal learner must parse the current input

sentence using the grammars of every language in the largest language set. This is

necessary in order to determine which languages can (or cannot) be removed from the

lattice. However, the LL Optimal learner efficiently decodes the input sentence using

treelets from smallest language grammars, just as the Integrated learner does, the

additional pruning phase employed by the LL Optimal learner increases the

computational cost in terms of parses as compared to the Integrated learner.

2.4.2 Integrated Learner Performs Best

The SP Lattice Integrated learner (Integrated learner) is able to converge quickly on

the target language because of the constrained treelet selection it uses during

 81

decoding of the input sentence. It is guaranteed to choose a parse that corresponds to

a language in the smallest language set, if one exists that can parse the current input.

By contrast, the SP Lattice Decode learner (Decode learner) and SP Lattice Decode

Favor Unmarked learner (Decode Favor Unmarked learner) also use the parser but

they rely on random chance (in the case of the Decode learner) and a count of

unmarked parameters (in the case of the Decode Favor Unmarked learner) to select a

serial parse; there is no guarantee that the parse selected corresponds to a language

that is currently in the SL set. If the selected serial parse does not correspond to a

language in the SL set then the current hypothesis is retained and no learning takes

place. There may in fact be many parses that do correspond to languages in the

smallest language set that are overlooked by the Decode or Decode Favor Unmarked

learners. Consequently, these learners miss learning opportunities due to incorrect

parse selection (with respect to the SL set). Incorrect parse selection decreases the

frequency of hypothesis changes, which in turn, decreases the number of times that a

language can be removed from the search space. Hence memory for past grammars is

underutilized.

Since the Integrated learner, on the other hand, is guaranteed to select a serial parse

that corresponds to a language in the smallest language set (if one exists), the benefit

of memory for past grammars is significantly increased. The Integrated learner will

hypothesize different languages more often and consequently eliminate more

languages from the search space.

 82

Unfortunately, the guarantee of selecting a smallest language during a serial parse is

difficult to establish within current linguistic theory. Our implementation constrains

the learner in such a way that an SL grammar is chosen (if one exists). However, it is

probably the case in the domain of natural languages that syntactic parameters can

conspire in non-transparent ways (Fodor & Sakas, 2004). This might mean that two

treelets drawn from the pool of SL set treelets, might in combination, guide the

learner to entertain a non-SL set hypothesis. Obviously, this would be a fatal error if

the non-SL set hypothesis was a superset of the target language. However, the

positive results presented in this thesis of the efficiency of the Integrated learner

recommend further linguistic investigation of whether or not these subset-superset

parametric conspiracies could possibly be innately endowed, i.e., part of UG

principles (see discussion in Fodor & Sakas 2005 of subset-superset parametric

conspiracies).

2.4.3 Higher Parsing Priority Hinders The Decode Learner

The performance of the SP Lattice Decode learner (Decode learner) suffers because it

prioritizes parsing over SP which is employed post-parsing to avoid potential superset

errors. This learner operates by decoding the current input sentence in order to find a

candidate hypothesis grammar. The candidate hypothesis grammar is checked to see

if it is a member of the current SL set. If it is in the SL set then it becomes the current

hypothesis grammar otherwise the previous hypothesis grammar is retained. Progress

is made towards the target grammar only in the case that the learner chooses a

 83

candidate hypothesis grammar that is a member of the current SL set. If the generated

parse does not correspond to a grammar in the current SL set then, due to SP

considerations, the learner must not change its current hypothesis. There may have

been a suitable new hypothesis grammar in the SL set that could parse the current

input which was missed by the random selection of treelets at choice-points

encountered during decoding.

For this learner, target grammars that are not at the bottom of the lattice are harder to

learn. This is the case because there are sentences in those target languages which

aren't in SL set languages. During learning, the decoding process will often generate

parses that correspond to non-SL set languages and consequently more input

sentences will be discarded than if the target language were in the SL set.22 To

acquire a target grammar that is not in the SL set it is necessary for the learner to

disconfirm all of the target grammar’s subsets. Once all of the target grammar’s

subsets have been disconfirmed then the target will become a member of the SL set

and it can be selected as a hypothesis. This learner can disconfirm grammars only

after they are hypothesized. Once a grammar is disconfirmed the learner will use its

memory for past grammars to ensure that the disconfirmed grammar is not selected

again as a hypothesis grammar.

The distribution of sentences in the target language with respect to its subset and

superset languages will determine how fast convergence will be for this learner. If

22 Technically this isn't quite true. It could be the case that by sheer luck the learner always chooses
treelets that correspond to languages in the SL set. Note that this situation reduces exactly to our
Integrated Learner (see section 2.3.5 Integrated Learner).

 84

there is not a large overlap between sentences of the target language (when the target

is not a member of SL) and the sentences of languages in SL, then learning will be

slow. The large percentage of sentences in non-SL set languages cause the learner to

discard many input sentences and retain the previous grammar hypothesis. Inputs are

wasted and learner efficiency is decreased. A large percentage of sentences in SL set

languages will increase learner efficiency. Even if the learner chooses languages in

the SL set other than the target it will at least be able to remove those grammars from

the search space when they are disconfirmed. There will be far fewer times when the

learner discards the current input sentence and just retains the current hypothesis.

2.4.4 CoLAG Is Unlearnable For The Decode Favor Unmarked Learner

The SP Lattice Decode Favor Unmarked Learner (Decode Favor Unmarked learner)

is similar to the SP Lattice Decode learner (Decode learner) but is an attempt to

improve performance by using a heuristic to increase attention to SP considerations.

This learner will always choose the parse that corresponds to the most unmarked

grammar. It does this by choosing an unmarked parameter value (treelet) when

encountering a choice point during decoding. Exactly like the Decode learner, if the

candidate hypothesis is in the SL set, it is chosen as the (new) current hypothesis

otherwise the (previous) current hypothesis is retained.

Some languages in the CoLAG domain are unlearnable for the Decode Favor

Unmarked learner. The unlearnable languages are a result of the unmarked grammar

 85

count search heuristic. The unmarked grammar count search heuristic can sometimes

cause the learner to get stuck in a local maximum. This occurs only under certain

conditions, specifically, when the unmarked grammar search heuristic causes the

parser to select candidate grammars that are incompatible with SP. This results in the

learner not being able to change its hypothesis, since a grammar must necessarily be

hypothesized in order to attain the target. The inability of the learner to hypothesize a

given language results in that language, and all supersets of it, being unlearnable.

Any subset-superset pair of languages where the superset has a greater unmarked

count than the subset will cause some languages in the domain to be unlearnable. The

unlearnable languages will be the subset of that pair and all supersets of that subset.

These languages are unlearnable as a result of the way the SP Lattice Decode Favor

Unmarked Learner chooses a parse during decoding. The SP Lattice Decode Favor

Unmarked Learner will always choose the parse that corresponds to the most

unmarked grammar. If the superset has more unmarked values then the superset parse

will always be chosen over the subset parse during decoding. The learner will now

check to see if the superset parse corresponds to a language in the SL set. Since the

superset is not currently in the SL set, the learner will just retain the previous

grammar hypothesis. The superset grammar cannot become a hypothesis until it is a

member of the SL set but it cannot be a member of the SL set until all of its subsets

are removed from the lattice. In order for all of the subsets to be removed each subset

must be hypothesized at some point during learning. This is where the problem arises.

The subset with the lower unmarked count can never be hypothesized because the

 86

learner will always favor the superset grammar as a candidate hypothesis due to its

higher unmarked count. The superset grammar will always be favored as a candidate

over the subset grammar but it cannot become a hypothesis until the subset grammar

is removed. The subset cannot become a hypothesis because the superset grammar

has a higher unmarked value count. This is a deadlock situation. Both the subset and

the superset are unlearnable. In addition, all supersets of the problematic subset are

also unlearnable. This is the case even if those supersets have lower unmarked value

counts. Those supersets are unlearnable because they require the problematic subset

to be removed from the lattice at some point and that will never happen.

The Decode Favor Unmarked learner makes use of memory for past grammar

hypotheses but this does not help with the learnability of some languages in the

domain. Current grammar hypotheses are removed from the lattice only when they

fail to parse the current input sentence. This learner gives priority to the parser when

selecting the next grammar hypothesis. If the parser chooses candidates that are not

compatible with SP then the learner will retain the previous hypothesis because SP

must be obeyed. The secondary status of SP creates problems for this learner just as it

did for the Decode learner. The unmarked count constraint imposed on the parser

only approximates SP considerations. The actual application of SP is done after

parsing has been completed. Unfortunately, unmarked values for parameters don’t

necessarily correspond to subsets. In order for this learner to make progress towards a

target that is not currently in the SL set, grammars in the SL set must be

hypothesized. Hypothesizing grammars in the SL set becomes hard because the

 87

grammars with the most unmarked values are being selected and those grammars may

not be in the SL set at the moment. All parameters are used when counting marked

and unmarked, not just subset/superset parameters. The non-subset parameters

adversely affect the unmarked counts and cause some languages in the domain to be

unlearnable.

There is a special case to the subset-superset pair unmarked count problem which is

in fact learnable. If the subset of the pair starts out at the bottom of the lattice then

both languages are learnable. They are learnable because there is a chance that the

subset language can be chosen as the initial grammar hypothesis. Selection of the

initial grammar hypothesis is done using a uniformly distributed random selection of

the grammars at the bottom of the lattice. This random selection does not take the

unmarked count into consideration so it is possible to hypothesize the subset of the

offending subset-superset pair. If the subset is chosen then it will eventually be

disconfirmed and stored in the memory for past grammars. It will no longer be in

conflict with the superset grammar. Any problems related to this specific subset-

superset pair would now be resolved.

Note that many of the problems for this learner would disappear if there were a

transparent relationship between the parameter values and the languages they

generate. I.e., if grammar markedness truly reflected the subset-superset relationships

in the space of languages. This is stipulated a priori in many theoretical discussions of

SP (see for example, the Subset Condition and Independence Principle of Manzini

 88

and Wexler (1987) and Wexler and Manzini (1987) and the Simple Defaults Model of

Fodor and Sakas (2005)) but clearly does not hold for the empirical work on the

CoLAG domain presented in this thesis.

2.4.5 Impact of the Flashlight

The Flashlight is used as a type of memory for the success of past grammars. The

goal of the flashlight is to point the learner towards the most successful grammars as

it moves through the search space. The flashlight biases the learner towards

hypothesizing languages that have most often contained an encountered input

sentence; i.e., supersets of previously hypothesized languages. This keeps the learner

focused on a specific area of the lattice that has proved successful at licensing inputs

in the past.

Interestingly, results show that the SP Lattice Flashlight learner (Flashlight learner)

performs about the same as the SP Lattice learner (Lattice learner) in terms of the

average number of sentences and the average number of parses but it has greatly

increased learner efficiency in terms of the 99% values for those two metrics; from

Table 1, without the flashlight Avg # sents: 858.69, 99% value: 1453.63 and with the

flashlight Avg # sents: 900.88, 99% value: 968.28. Without the flashlight Avg #

parses: 1588.99, 99% value: 2643.41 and with the flashlight Avg # parses: 1669.76,

99% value 1744.68. This implies that the variance across the learning times of the

target languages in the domain has decreased dramatically.

 89

Learner Subsets
Avg Sents

Avg Height
 Avg Sents

Subsets
Avg Parses

Avg Height
Avg Parses

Lattice .80 .87 .82 .89

Flashlight .06 .00 .07 .01

Table 2: Pearson r correlations for Lattice and Flashlight learners.

Analysis of the behavior of the Lattice learner with the flashlight attached reveals

that, the flashlight offers the greatest benefit to target languages higher in the lattice.

Target languages higher in the lattice are effectively deeper in the search space since

(subset) languages below them need to be considered and eliminated first.23 Table 2

illustrates the relationship between the location of a language in the lattice and the

computational effort required by a given learner to acquire the target language. The

numbers in Table 2 are Pearson r correlations which range from 1.0 to -1.0. A value

of 1.0 means there is a perfect correlation between the sets of values being compared.

For example, a high correlation between subsets and sentences would mean that an

increase in the number of subsets would cause an increase in the number of sentences

required to acquire the target language. A value of 0.0 means there is no correlation

between the sets of values. A value of -1.0 means that as one value increases the other

decreases and vice versa. The Lattice learner has a high correlation on all of the

Pearson r comparisons that were measured (subsets to sentences, subsets to parses,

avg height to sentences, avg height to parses). This means that languages that are

23 Note that this is true since we are attaching the Flashlight heuristic to the SP-lattice learner. Other
learners might or might not require entertaining lower languages in the lattice before ones higher in the
lattice. We attached the Flashlight to this particular learner, since it is the most nondeterministic of the
lattice learners and subsequently the best to determine the potential benefit of the Flashlight.

 90

higher in the lattice are harder for it to learn. Importantly, the Flashlight learner shows

no correlation between the location of the target language in the lattice and the

computational effort required to acquire the target.

Why are the higher languages harder to learn for the Lattice learner? At a minimum,

languages higher in the lattice have more subsets that have to be hypothesized and

subsequently disconfirmed. All subsets of a language must be hypothesized and

disconfirmed before the Lattice learner can hypothesize a given target language.

When the Lattice learner selects a hypothesis language from the SL set there is no

guarantee that the language being selected will be a subset of the target language. The

Lattice learner is performing unnecessary work when it hypothesizes languages which

are not subsets of the target language. Target languages higher in the lattice force the

Lattice learner into making more random choices which increases the chances of

selecting non-subsets of the target. An increased number of random selections causes

an increased number of times that the learner will select garden path hypotheses,

which will in turn increase the number of sentences necessary to acquire the target

language. The flashlight learner decreases the amount of times that the learner selects

non-subsets of the target language. It forces the learner to hypothesize languages

which are subsets of the target and consequently reduces the amount of effort

necessary for the learner to acquire the target language.

Results show that the Lattice learner and the Flashlight learner require about the same

computational effort to acquire languages lower in the lattice. This makes sense

 91

because acquiring languages lower in the lattice is more dependent on random

chance. If a language is at the bottom of the lattice then all of the flashlight counts

will be 0 and the Flashlight learner is reduced to selecting at random just as the

Lattice learner does. For languages that are just above the bottom, say 1 level up, the

flashlight will still not help much because all of the target language’s subsets will

have flashlight counts of 0. However, it will be easier to find the target language

when it becomes a member of the SL set because it will have a flashlight count

greater than 0.

The effectiveness of the flashlight depends on the percentage of subset-free triggers in

the target language. A high percentage of subset-free triggers means that most

sentences will increase only the target language’s activation count24. A low

percentage of subset-free triggers may or may not be bad. A small amount of subset-

free triggers combined with numerous overlapping languages will mean that many

languages will have their activation counts increased. A small amount of subset-free

triggers combined with only a few overlapping languages will mean not as many

languages with high activation counts and consequently the target language will be

easier to find.

2.4.6 Retrench Learner Is Good But CoLAG Is Unlearnable

24 The activation counts of all superset languages of the target language will also be increased but they
are irrelevant because the only way those languages can become possible hypotheses is to disconfirm
the target language and that can never happen with the SP Lattice Flashlight learner.

 92

The Retrench learner only learned on 95% of the trials. This was due to the

configuration of the lattice for certain languages and their subsets. For example, for

language 3 in the CoLAG domain, all 100 trials failed. Language 3 has three subsets:

Languages 1, 67 and 579. All of the sentences in language 3 are members of one of

the subset languages. There are no subset-free triggers in language 3. The absence of

subset-free triggers in language 3 means that language 3 is unlearnable using the

Retrench learner. The Retrench learner will retrench down the lattice until there are

no subset languages that can parse the current input sentence. For language 3 the

Retrench learner will always retrench to one of its subsets because every sentence in

language 3 is in one of language 3’s subsets. There are no subset-free triggers that

will allow the learner to hypothesize language 3. In general, any language that has no

subset-free triggers is unlearnable using the Retrench learner. There is no way to

escape the retrenchment problem that arises. The Retrench learner has no memory for

past grammars so it cannot disconfirm the problematic subset grammars. The

problematic grammars will always be allowed to become the current hypothesis. If

memory for past grammars were used then this learner could escape the retrenchment

problem. The learner would fall into the problematic subsets but those subsets would

eventually be disconfirmed and removed from the lattice. As the subsets are removed

sentences that were previously members of subsets now become subset-free triggers

for the duration of the trial. It would now be possible to hypothesize the target

grammar and therefore learn the language.

 93

Language Total
Sentences

Sentences
in common

with
subsets

Subset-
free

Triggers

Pct of
overlap

Pct of Learned
Trials for
Retrench
Learner

2642 312 300 12 96.15% 91%

2649 408 396 12 97.06% 77%

6754 279 278 1 99.64% 35%

Table 3: Retrench learner performance on selected languages from the CoLAG
domain.

The percentage of subset-free triggers can also affect learner performance (see Table

3). In general, languages with higher percentages of subset-free triggers will be easier

to learn. In the CoLAG domain some languages such as 2649 and 2642 are learned on

some of their trials. Language 2649 has 77% of its trials learned whereas 2642 has

91% of its trials learned. The percentage of learned trials depends on the overlap

percentage between sentences in the superset language and sentences in the union of

the subset languages.

2.4.7 The Parser and SP Work Best in Tandem

Results showed that learners giving equal priority between parsing and SP

considerations performed best. The equal priority between parsing and SP allowed

learners to quickly attain hypotheses that were both relevant to the current input

sentence and compliant with respect to SP constraints. Giving one or the other

 94

priority seemed to decrease learner efficiency. Hypothesis selection becomes more of

a hit or miss proposition when one is given priority over the other. For example, the

Decode learners give the parser priority and as a result they must hope that the

grammar associated with the constructed parse is compatible with SP constraints. If

that grammar is not compatible with SP constraints then the previous hypothesis must

be retained. Retaining the previous hypothesis means that nothing will have been

learned from the current input sentence. More input sentences are needed in order to

discover candidate hypotheses that are compatible with SP. This is a waste of

computational resources. Giving SP priority can also decrease learner efficiency. The

SP Lattice and SP Lattice Flashlight learners give SP priority. These learners will

only select languages from the bottom of the lattice. Constraining hypotheses in this

way is good for SP but it does not utilize information that is present in the current

input sentence. The parser is employed simply to confirm or disconfirm hypotheses

that were chosen strictly on the basis of SP considerations. Languages that are

completely disjoint with respect to the target are free to be selected as the current

grammar hypothesis. The side effects of selecting hypotheses that are not related to

the input are not nearly as bad for the SP priority learners. These learners are able to

utilize memory for past grammars and will not fall into the trap of selecting that

hypothesis again. The effects of adding memory for past grammars are not masked

like they are when the parser is given priority. When the parser settles on a parse that

corresponds to a grammar that is not compliant with SP it must revert back to the

previous hypothesis. Memory for past grammars cannot be utilized in this case

because the previous grammar hypothesis was not eliminated. The benefits of

 95

memory for past grammars are never seen using the Decode and Decode Favor

Unmarked learners because SP compliant hypothesis grammars are slow to be

selected or even impossible to be selected.

Memory for past grammars should increase learner efficiency as long as it is

compatible with the learner. Compatible, in this sense, means that the learner is

actually able to utilize the memory. In the case of the Decode learners, the memory

was there but it was effectively unreachable. Poor parse selection forced the learner to

retain the current hypothesis and consequently underutilize the memory. The SP

Lattice learner did not perform best in terms of sentences or parses but it was still able

to learn all of the languages in the domain. This high learnability was a result of the

memory being accessible. The SP Lattice learner was able to continually change its

hypothesis and as a result shrink the search space and eventually attain the target.

Thus, as expected, memory for past grammars is effective as long the learner is of a

kind that is able to use it.

 96

3 Comparison of Partial and Total Ordering Learners

The learners that have been presented thus far all use a partial ordering (the lattice) to

drive hypothesis selection and abide by the Subset Principle. Early research in

language learning performed by Gold (1967) proposed using a total ordering of

languages to drive hypothesis selection. Pinker (1979) has argued that the use of a

total ordering to drive hypothesis selection is psychologically and computationally

infeasible as a model of first language acquisition. We developed a partial ordering in

order to keep the essential relationships given by a total enumeration while at the

same time being psychologically and computationally feasible as a model of first

language acquisition. This chapter investigates the efficiency of partial ordering

learners compared to total ordering learners.

 97

3.1 Why Use A Partial Ordering?

Although Gold's (1967) enumeration learner is the provably fastest learner given

infinite classes of languages to be searched, in this chapter we set out to show that the

partial ordering learners described in this thesis will be substantially faster than

Gold's learner given a finite domain of languages. Gold’s learner is only allowed to

hypothesize languages in the order that they appear in the given enumeration. At any

given point in the learning process the total ordering learner is only allowed to

hypothesize the next language in the enumeration. With regards to SP, the only

constraint for language learners in general is that they should hypothesize subsets of a

given language before supersets of that language. The total ordering learner obeys SP

but it cannot exploit the fact that other languages may not have a subset-superset

relationship and that they are free to be selected with respect to SP. The partial

ordering learner is similar to the total ordering learner in that it enforces SP but it is

relieved of the burden of following a full enumeration of all the languages in the

domain. The freedom that the partial ordering learner has with respect to hypothesis

selection as compared to the total ordering learner will improve efficiency.

3.2 Total Ordering Learners

The total ordering learners that we have implemented operate in the same manner as

Gold’s learner with some slight modifications. Identification in the limit is not

 98

invoked to determine when a learner has acquired the target language. Acquisition of

the target language is defined to occur when the learner hypothesizes the target

language or a language that is weakly equivalent to the target language. Identification

by enumeration is used to determine hypothesis selection just as in Gold’s learner.

The enumeration given to the learners consists of all languages in the CoLAG

domain. Gold proved that no learner using the identification by enumeration guessing

rule is uniformly faster than any other learner using the identification by enumeration

guessing rule so the order of the languages in our enumeration does not matter with

respect to learner performance on the language domain as a whole. However, the

enumeration will be constrained such that all subsets of a given language are

guaranteed to appear before that given language in the enumeration. This ensures that

the total ordering learner will abide by the Subset Principle. Languages which do not

have subsets or supersets may appear anywhere in the enumeration.

3.3 Gold’s Total Ordering Learner

What I will call Gold’s total ordering learner is equipped with memory for all

encountered input sentences. A candidate hypothesis is adopted if and only if it

licenses all of the input sentences presented. The class definition for the learner is

given in Figure 26 and the algorithm is detailed in Figure 27. The initial grammar

hypothesis will be set to the first grammar in the enumeration. The learner gets a

sentence from the input environment and checks to see if it is licensed by the current

hypothesis. If it is then the current hypothesis will be retained otherwise a new

 99

hypothesis will be chosen. When choosing a new hypothesis the learner will iterate

through the enumeration until it finds a grammar that can license all of the input

sentences that have been encountered.

CLASS TotalOrderingLearner INHERITS Learner
 CLASSPROCEDURES
 Reset();
 SetFirstHypothesis();
 PickNextHypothesis();

 LicensedAll(GrammarID);
 AddSentence(Sentence);
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 DECLARE TotalOrdering;
 DECLARE SentenceVector;
 /* TotalOrdering: Enumeration containing all languages
 in the CoLAG domain.
 SentenceVector:Collection of all input sentences
 presented to the learner so far. */

ENDCLASSVARIABLES
ENDCLASS

Figure 26: TotalOrderingLearner class.

 100

3.4 Memoryless Total Ordering Learner

The memoryless version of the total ordering learner is the same as Gold’s Total

Ordering learner except that the memoryless version has no memory for past input

sentences. The class definition for the learner is given in Figure 28 and the algorithm

is detailed in Figure 29. The initial grammar hypothesis will be set to the first

grammar in the enumeration. This learner will retain the current hypothesis as long as

it can parse the current input sentence. If the current hypothesis cannot parse the

current input sentence the learner will move through the enumeration until it finds a

grammar that can parse it.

PROCEDURE TotalOrderingLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis. */

Sentence Environment.GetAnInput();
AddSentence(Sentence);

IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

DO

CandGrammID MoveToNextGrammarHypothesis();
WHILE (NOT LicensedAll(CandGrammID));

HypoGrammID CandGrammID;

ENDPROCEDURE;

Figure 27: Gold’s Total Ordering learner algorithm.

 101

CLASS TotalOrderingMemorylessLearner INHERITS TotalOrderingLearner
 CLASSPROCEDURES
 Reset();
 SetFirstHypothesis();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 ENDCLASSVARIABLES
ENDCLASS

Figure 28: TotalOrderingMemorylessLearner class.

PROCEDURE TotalOrderingMemorylessLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis. */

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

DO

CandGrammID MoveToNextGrammarHypothesis();
WHILE (NOT Licensed(CandGrammID));

HypoGrammID CandGrammID;

ENDPROCEDURE;

Figure 29: Memoryless Total Ordering learner algorithm.

 102

Although this version of the total ordering learner is more psychologically feasible as

a model of human language acquisition than the Total Ordering learner (Figure 26

and Figure 27) since it does not endow the learner with the capacity to store an

infinite number of input sentences, the number of parses per input sentence is

unconstrained (up to the size of the domain) which is still too computationally

demanding to be considered as a realistic model of human language learning.

3.5 Constrained Memoryless Total Ordering Learner

The constrained memoryless total ordering learner is the same as the memoryless

total ordering learner except that it is limited to two parses per input sentence. The

class definition for the learner is given in Figure 30 and the algorithm is detailed in

Figure 31.

CLASS TotalOrderingConstrainedMemorylessLearner INHERITS
TotalOrderingMemorylessLearner
 CLASSPROCEDURES
 Reset();
 SetFirstHypothesis();
 PickNextHypothesis();
 ENDCLASSPROCEDURES

 CLASSVARIABLES
 ENDCLASSVARIABLES
ENDCLASS

Figure 30: TotalOrderingConstrainedMemorylessLearner class.

 103

The constrained memoryless version is the most psychologically feasible of the total

ordering learners. It does not assume infinite memory for input sentences and

realistically constrains the number of parses per input sentence; it is limited to a

maximum of two parses per input sentence: One parse to test the current input

sentence and another parse to test a candidate hypothesis. Most of the lattice learners

were designed to be psychologically feasible with regards to memory and

computation. Gold’s learner in its original form is infeasible in both respects. All the

lattice learners, except the LL-Optimal learner, respect the two parse per sentence

PROCEDURE
TotalOrderingConstrainedMemorylessLearner::PickNextHypothesis()

DECLARE Sentence, CandGrammID;

/* Sentence: The current input sentence.
 CandGrammID: A candidate grammar hypothesis. The learner
 is entertaining the idea of making this
 grammar the next hypothesis. */

Sentence Environment.GetAnInput();

IF Licensed(HypoGrammID, Sentence)
 THEN RETURN;
ENDIF;

CandGrammID MoveToNextGrammarHypothesis();

IF Licensed(CandGrammID, Sentence)

THEN HypoGrammID CandGrammID;
 RETURN;

ENDIF;

HypoGrammID MoveToNextGrammarHypothesis();

ENDPROCEDURE;

Figure 31: Constrained Memoryless Total Ordering learner algorithm.

 104

limit. By constraining Gold’s learner similarly to the constraints we placed on our

lattice learners, we are able to fairly compare the efficiency of both types of learners.

3.6 Discussion and Results

Learner Avg
Sentences

Avg 99%
for

Sentences

Avg
Parses

Avg 99%
for Parses

Gold’s Total Ordering 15.63 52.00 1799.31 2635.65

Total Ordering Memoryless 22.26 62.38 1549.37 1589.49

Total Ordering Constrained
Memoryless

902.80 964.36 1669.82 1731.67

SP Lattice 858.69 1453.63 1588.99 2643.41

LL Optimal 15.55 58.58 434.55 813.97

Integrated 140.43 286.24 140.43 286.24

Retrench 188.17 696.75 585.83 2134.15

Table 4: Comparision of Total Ordering and Lattice learners

3.6.1 Total Ordering Learner Inefficient In Terms of Parses

The Total Ordering learner (Gold’s version) consumed almost exactly the same

number of sentences on average as the SP Lattice LL Optimal learner (LL Optimal

learner) before acquiring the target. As expected these learners yielded the best

performance in terms of the number of input sentences. These learners needed

 105

approximately 16 sentences on average to converge on the target. The memoryless

version of the Total Ordering learner performed almost as well using approximately

22 sentences on average. Although performance of these learners is impressive, these

results must be taken with a grain of salt because both the Total Ordering learner and

the LL Optimal learner are psychologically infeasible due to the lack of constraints on

the number of parses per input sentence. This psychological infeasibility is due to the

excessive amount of parallel parsing25 that these learners engage in. In the case of the

LL Optimal learner, massive chunks of the search space are pruned off given the right

input. Likewise, the Total Ordering learner can move through large sections of the

enumeration on only one input sentence. This would be the case if an input sentence

was unambiguous with respect to the target language and that target language was

deep in the enumeration. The Total Ordering learner moves through multiple

languages in the enumeration without requiring new input sentences. Note that the

input sentence does not need to be completely unambiguous to move through large

sections of the search space. For example, if the first input sentence was a member of

10 languages (assuming the CoLAG domain of 3072 languages) and those 10

languages were located somewhere in the final 1000 languages of the enumeration

then the Total Ordering learner could move through the first 2072 languages of the

search space using only that first input sentence. Of course, there is work going on

even though unaccounted for in terms of the number of input sentences required by

the learner. In order for the learner to adopt a new hypothesis in the enumeration, a

parse is executed for each intervening grammar between that hypothesis and the

25 Technically this parallelism could be replaced with a sequence of distinct serial parses, but either
way the amount of computational cost is most probably beyond what is psychologically feasible.

 106

current hypothesis. This implies that there is at least one parse performed for each and

every language in the enumeration up to the target language. Now assume the target

language is located at the end of the enumeration and the first input sentence is

unambiguous with respect to that language. The Total Ordering learner will move

through the whole enumeration on that single input sentence. The results of that trial

in terms of number of input sentences consumed is not at all indicative of the amount

of "work" that the learner performed. On the surface one input sentence is an

extremely efficient result. In reality, what happened was the Total Ordering learner

performed an exhaustive search of the language domain; the learner had to parse the

input sentence using the grammars of every language in the domain. It did not adopt

every language on the way to the target language, but it considered every one. In this

example, although the cost in terms of number of inputs is 1, the cost in terms of the

number of parses is 3072.

The number of sentences could also overestimate the amount of work being done by

the learner. For example, suppose the target language is located near the beginning of

the enumeration, say 20th position. Also suppose that the stream of input sentences

presented to the learner caused it to hypothesize each of the 19 languages located in

front of the target language in the enumeration. That is, each input allowed the learner

to move only one grammar forward. The cost in terms of sentences and parses is 20.

Now compare the Total Ordering learner efficiency for this example against the

previous example, which had the target language at the end of the enumeration. In

terms of the number of input sentences, it took the learner much less time to acquire

 107

the target language located at the end of the enumeration than it took the learner to

acquire the language at the beginning of the enumeration. It appears that it is easier

for the learner to acquire the language at the end of the enumeration. Of course this is

misleading. The number of parses gives a better indication of the work done by the

learner to acquire the target language. It took the total ordering learner 3072 parses to

acquire the language at the end of the enumeration and only 20 to acquire the

language at the beginning. This gives a more accurate representation of the effort put

forth by the learner. We can now see that it took more work for the total ordering

learner to acquire the language at the end of the enumeration than the language at the

beginning.

The Total Ordering learner employs memory for past input sentences. During

learning, the computational cost of using this memory is unaccounted for when using

the number of input sentences as a metric. For each input sentence the Total Ordering

learner parses the current input and all previous inputs encountered up until that point.

For example, the computational cost to the Total Ordering learner in order to process

the first ten input sentences is 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 parses. The

number of parses is a good indication of the work performed by the learner due to

memory for past sentences when faced with ambiguous input. Unlike the previous

examples, suppose the total ordering learner is exposed to a string of ambiguous input

sentences such as those depicted in Figure 32.

 108

Figure 32: Language domain with ambiguous input sentences.

The input sentence memory store gives the Total Ordering learner a large advantage

when exposed to this type of input. If each sentence were taken individually without

memory, it might be hard for the learner to move through the enumeration towards

the target language. The Total Ordering might hypothesize languages in the order

shown. The sentences are ambiguous and they could easily be members of multiple

non-target languages. The high ambiguity of these input sentences impedes

movement through the enumeration toward the target language. Collecting input

sentences and using the grammar associated with the current hypothesis to parse each

member of the collection each time a new input sentence is encountered greatly

increases the chances of disconfirming an invalid hypothesis. Now all input sentences

must be members of the current hypothesis language in order for that language to be

retained as the current hypothesis. The chances of disconfirming invalid hypotheses

are greater because of the sentence memory store. For the example given in Figure

 109

32, the Total Ordering learner would be forced to give up hypothesis 3 after the third

input sentence was encountered. Importantly, the learner would also be compelled to

hypothesize the target next because no other language contains all three input

sentences. The input sentence memory store for the Gold learner increases learner

efficiency in terms of the number of input sentences but it decreases learner

efficiency in terms of the number of parses.

The Total Ordering learner performed the worst in terms of parses of all the learners

being compared in this chapter. The input sentence memory store for the Gold learner

turns out to be very expensive in terms of the number of parses. Each time a new

input sentence is encountered that sentence and all of the sentences in the memory

store must be parsed against the current hypothesis grammar. Consequently, the

computational cost in terms of the number of parses will greatly increase as sentences

are added to the memory store. Importantly, a major difficulty for the Total Ordering

learner is the fact that it must necessarily parse every single grammar in the

enumeration that is located before the target grammar. Even if a grammar is safe to

skip over in terms of SP it must still be checked against all input sentences

encountered to this point. These extra checks add to the computational cost. In

contrast, the lattice learners have an advantage over the Total Ordering learners

because they are only required to check languages that are supersets and/or subsets of

candidate hypothesis languages. Unlike the Total Ordering learners, they are not

required to check any languages that are not in a subset-superset relationship. This

 110

freedom is what separates the lattice learners from the total ordering learners in terms

of the number of parses.

3.6.2 Effects of Removing Total Ordering Input Sentence Memory Store

The Total Ordering Memoryless learner (Memoryless learner) is a modification of the

Gold learner such that the input sentence memory store has been removed. The

Memoryless learner does not test each input sentence encountered so far against a

candidate hypothesis grammar and that results in less parses being needed for each

individual input sentence. However, more sentences will probably be needed to

disconfirm a false current hypothesis. The need for more input sentences will cause

an increase in the number of parses and some of the efficiency gains realized by

excessive parsing of each new grammar will be reduced. Results showed that the

memoryless version outperforms Gold’s version by approximately 250 parses on

average. The additional parsing load caused by memory for past input sentences

would seem to account for the difference in parsing efficiency of the two learners.

The memory store is a double-edged sword. On the one hand the additional sentences

make it easier to disconfirm false hypotheses but on the other they make it more

computationally costly due to having to parse each individual input sentence. As the

number of stored sentences increases, the cost of testing a new grammar hypothesis

also increases. Adding new sentences to the memory store may have diminishing

returns after a certain point. In practice, only a few sentences stored in memory may

be necessary to greatly increase the ability of the learner to disconfirm false

 111

hypotheses. If the size of the memory store were limited the learner may realize

performance gains in terms of speedier disconfirmation of false grammar hypotheses

without the burden of parsing every single input sentence for every single grammar

hypothesis. Limiting the memory will mean less parses for a given input sentence but

the learner will still benefit from extra input sentences during disconfirmation of a

current hypothesis. Figure 32 (from section 3.6.1 Total Ordering Learner Inefficient

In Terms of Parses) gives an example of a language domain where memory for only

three input sentences would be necessary to see an increase in learner efficiency.

Performance of the Memoryless learner was only slightly worse than the Total

Ordering learner in terms of the number of input sentences. The removal of the

memory store only slightly affected performance. The Memoryless learner was still

free to move through the enumeration as far as it could and so the number of input

sentences remained very low. In domains with a higher level of ambiguity the

difference in performance between these two learners would probably be more

pronounced.

3.6.3 Constraining Total Ordering Learner Affects Performance

The Total Ordering Constrained Memoryless learner (Constrained Memoryless

learner) was modified such that it is limited to two parses per input sentence.

Constraining the Total Ordering learner in this manner creates a situation where the

lattice learners and the total ordering learner can now be compared fairly. It would be

 112

unjust to compare the learners when one is allowed unlimited parses for each input

sentence and the other is not. Results showed that when using the number of input

sentences as the measure of efficiency the Constrained Memoryless learner was

slightly worse than the SP Lattice learner (Lattice learner). The parsing constraint

forces the Constrained Memoryless learner to use more sentences in order to

converge on the target. Gold’s unconstrained version of the total ordering learner

allows it to traverse the whole enumeration with only one input sentence since there is

no constraint on the number of parses per input sentence.

Allowing the Total Ordering learner to move through the whole enumeration without

regard for the number of parses is psychologically infeasible. Constraining the Total

Ordering learner now makes its performance comparable to the Lattice learner’s in

terms of the number of input sentences. 26

3.6.4 Partial Ordering More Efficient Than Total Ordering

The SP Lattice Integrated learner (Integrated learner) performed best of all the

learners. The Integrated learner required only 140 parses on average as compared to

the best total ordering learner that required 1549 parses on average. The Integrated

learner was more than ten times faster than the best total ordering learner in terms of

26 There was no constrained version of the Total Ordering learner (Gold’s version with a memory
store) because it would not have made sense since that learner must parse every input sentence in the
memory store. The learner would have only been allowed to parse one sentence from the memory store
and that would have had to be chosen at random. We could have removed the memory store
completely and allowed only one parse for the current input sentence but that would have created an
unfair comparison with the lattice learners which were allowed two parses per input sentence.

 113

the number of parses. Importantly, the Integrated learner is a psychologically feasible

model of first language acquisition and it was still able to outperform all of the total

ordering learners regardless of their psychological feasibility. The ability of the

Integrated learner to move about freely in the search space as compared to the total

ordering learner allows it to skip portions of the search space that the total ordering

learners cannot skip. The Integrated learner is able to outperform the total ordering

learners in terms of the number of parses because of the flexibility it has to move

around the search space and because of its ability to take full advantage of that

flexibility. In contrast to the total ordering learners, the Integrated learner is able to

focus on hypothesizing only the languages which are absolutely essential for it to

disconfirm in order to ensure that SP is obeyed. It does not waste time hypothesizing

languages that have absolutely nothing to do with the target grammar. This is the

Achilles heel of the enumeration learners. The decoding process that the Integrated

learner uses will only allow it to hypothesize grammars that are subsets of the target

language (in the case that one exists in the SL set). Only the languages that are

absolutely necessary to hypothesize are in fact hypothesized. The learner moves

directly to the relevant areas of the search space. This is in contrast to the total

ordering learners, which can spend time hypothesizing languages that are not subsets

of the target and which may not even have any sentences in common with the target

language. The total ordering learners are bound to examining the search space in a

specific order for every single trial, no matter what evidence is presented to the

learner. This rigid approach to navigating the search space will cause the

computational cost in terms of the number of parses to have a lower bound of half the

 114

size of the language domain on average. Utilization of a partial ordering as opposed

to a total ordering frees the Integrated learner to search only the parts of the search

space that are absolutely necessary to ensure that SP is being obeyed.

 115

4 Effects of Language Domain Shape on Learning

The research discussed in this thesis thus far has focused on how different learning

models operate in the CoLAG domain. The independent variable has been the type of

learner used to model first language acquisition. We have investigated how each

learner performs and what characteristics of each model contribute to their respective

performances. This chapter will now turn to the question of how the shape of the

language domain affects learner performance. We will approach this problem from

two directions. First, we investigate learner performance across varying language

domain shapes. Second, we will examine which learners performed best given a

language domain shape. The language domains constructed for these simulations can

be divided into two categories: subset language domains and properly intersecting

language domains. The subset language domains contain languages that have subsets

and/or supersets. The language domains in this category will vary according to their

subset-superset relationships. The properly intersecting language domains do not have

any pairs of languages that have subset-superset relationships. These language

domains will vary according to the amount of unambiguous triggers that each

language in the domain has. All languages within a given properly intersecting

language domain will have the same amount of unambiguous triggers.

 116

4.1 Why Examine Language Domain Shape?

Frequently, psychocomputational modeling of first language acquisition focuses on

creating different models and examining how each of these models performs. One

artificial language domain is posited and agents embodying one psycholinguistic

acquisition theory or another attempt to converge on the languages in that domain.

The existence of subset-superset relationships in a language domain adds more

complexity to the problem of creating efficient models of first language acquisition. If

subset-superset relationships do exist in the domain of natural human languages, then

the question arises as to how best to shape the language domain for a

psychocomputational modeling endeavor. What percentage of languages should have

subsets? How many levels of subsets are there? Is the overall shape of the partial

ordering of languages “taller” or “wider”? How much sentence overlap is there

between languages in the domain? It is clear that learning performance can vary

tremendously between different domains (e.g., Sakas 2000a, Sakas and Fodor 2001).

The goal of the research presented in the chapter is to examine how language domain

shape affects the learning performance of learners that obey the Subset Principle.

4.2 Tall Vs. Wide Lattices

The subset language domains we will be investigating can be grouped into two main

categories, tall and wide. A tall lattice has most languages positioned on long vertical

lines. If a tall lattice were viewed as a Venn diagram it would look like overlapping

 117

onions each with many layers. A wide lattice has most languages positioned next to

each other horizontally. There is very little deep nesting of languages in a wide

lattice.

4.3 Domain Ambiguity Within The Language Domains

The ambiguity of sentences in the domain importantly contributes to its shape. The

language domains were set up such that each language has one subset-free trigger or

one unambiguous trigger. Languages at the top of the lattice will have at least one

unambiguous trigger while languages that are not at the top of the lattice will have at

least one subset-free trigger. The percentage of subset-free triggers and unambiguous

triggers will vary by language and language domain shape. Within the subset

language domains the percentage of subset-free triggers that a language has will

depend on the number of subsets that the language has. If a language has a total of 49

subsets then it will have a total of 50 sentences resulting in only two percent of the

sentences being subset-free triggers. On the other hand, if a language has one subset

then it will have a total of two sentences giving a subset-free trigger percentage of 50

percent. Within the subset language domains only those languages at the top of any

lattice will have unambiguous triggers. The properly intersecting language domains

do not contain any languages in subset-superset relationships so languages in those

domains will all have at least one unambiguous trigger. For the properly intersecting

language domains, the percentage of unambiguous triggers will be dependent on the

overlap of languages in the given domain.

 118

4.4 Subset Language Domains

4.4.1 Description of Subset Language Domains

There are a total of 100 languages in each of the subset language domains. The subset

language domains are constructed such that each language in each domain is in a

subset-superset relationship with at least one other language in that domain. There are

no properly intersecting languages in the subset language domains. The distribution

of sentences is such that each language in each domain has one subset-free-trigger.

Seven different language domains were created: 5-45-45-5, Skewed, 10 x 10, 50 x 2,

25 x 4, 4 x 25, and 2 x 50. The domains were constructed so that they reflect different

types of shapes. Each domain is setup by row. For example, the 25 x 4 language

domain has 25 rows and 4 columns. Each language in a given row is in a subset-

superset relationship with each language in the row directly below it. In general, each

row in a language domain is fully connected to the row directly below it.

4.4.1.1 Language Domain Shape - 5-45-45-5

 119

Figure 33: Language Domain Shape 5-45-45-5 Fully Connected

The 5-45-45-5 language domain has 4 rows with a variable number of columns and is

a wide shape. All of the languages in a row are direct supersets of the languages of

the adjacent row below it and all languages below that row are indirect subsets of it.

Languages in the top row of this lattice will have 95 subsets each. There are only 5

languages in this domain that do not have any subsets.

 120

4.4.1.2 Language Domain Shape - Skewed

Figure 34: Language Domain Shape Skewed Fully Connected

The Skewed language domain was designed to be tall with two main branches. One

branch has 8 rows and 4 columns and the other has 16 rows and 4 columns. Within a

branch, all of the languages in a row are direct supersets of the languages of the

adjacent row below it and all languages below that row are indirect subsets of it. The

top row of the lattice has all languages fully connected to the top of each branch.

Languages in the top row of this lattice will have 96 subsets each. There are only 8

languages in this domain that do not have any subsets.

 121

4.4.1.3 Language Domain Shape – 10 x 10

Figure 35: Language Domain Shape 10 x 10 Fully Connected

The 10 x 10 language domain has 10 rows and 10 columns and was designed to be a

middle ground between tall vs. wide. All of the languages in a row, say row A, are

direct supersets of the languages of the adjacent row below it, say row B. The

languages in the rows below row B are indirectly subsets of the languages in row A.

Languages in the top row of the lattice will have 90 subsets each. There are 10

languages in this domain which do not have any subsets.

4.4.1.4 Language Domain Shape – 50 x 2

 122

Figure 36: Language Domain Shape 50 x 2 Fully Connected

The 50 x 2 language domain has 50 rows and 2 columns and is an extremely tall

shape. Each row in the language domain is fully connected to the row above it and

below it. The languages in the top row each have 98 subsets.

 123

4.4.1.5 Language Domain Shape – 25 x 4

Figure 37: Language Domain Shape 25 x 4 Fully Connected

The 25 x 4 language domain has 25 rows and 4 columns and is a very tall shape. The

goal of this design was to give the languages at the top of the lattice many layered

languages to go through in order to acquire the target. Again, all of the languages in a

row are direct supersets of the languages of the adjacent row below it and all

languages below that row are indirect subsets of it. Languages in the top row of this

lattice will have 96 subsets each. There are only 4 languages in this domain that do

not have any subsets.

4.4.1.6 Language Domain Shape – 4 x 25

 124

Figure 38: Language Domain Shape 4 x 25 Fully Connected

The 4 x 25 language domain has 4 rows and 25 columns and is a wide shape. All of

the languages in a row are direct supersets of the languages of the adjacent row below

it and direct subsets of the adjacent row above it. Languages in the top row of this

lattice will have 75 subsets each.

4.4.1.7 Language Domain Shape – 2 x 50

Figure 39: Language Domain Shape 2 x 50 Fully Connected

 125

The 2 x 50 language domain has 2 rows and 50 columns and is a very wide shape. As

before all of the languages in a row are direct supersets of the languages of the

adjacent row below it and all languages below that row are indirect subsets of it.

Languages in the top row of this lattice will have 50 subsets each. Half of the

languages in this domain do not have any subsets at all.

4.4.2 Performance Across Subset Language Domains

4.4.2.1 SP Lattice Learner Performance Across Language Domains

Language
Domain

Avg Height Avg
Sentences

Avg 99%
for

Sentences

Avg Parses Avg 99%
for Parses

5-45-45-5 1.50 310.74 703.01 336.22 736.85

Skewed 6.56 80.83 175.24 107.43 204.13

50x2 24.50 131.49 257.48 157.71 284.31

25x4 12.00 134.20 296.11 160.27 322.97

10x10 4.50 172.06 414.65 197.82 442.34

4x25 1.50 269.28 627.85 294.86 658.24

2x50 0.50 337.95 753.40 363.17 789.59

Table 5: SP Lattice learner results across language domains.

 126

The relative performance of the SP Lattice learner on all five language domains was

the same when using either sentences or parses as the measure of efficiency. The SP

Lattice learner performed best for both sentences and parses on the Skewed language

domain. The SP Lattice learner must eliminate all subsets of a given target language

before it can hypothesize the target language. Most of the languages (96%) in the

Skewed language domain are located in one of the two branches. The learner does not

need to eliminate any languages from the other branch which reduces the number of

languages that need to get eliminated on average for each language. For languages in

either branch of the Skewed language domain the worst location for a target language

would be at the top of the branch containing the 16 rows. Languages at the top of that

branch have 60 subsets each (15 rows x 4 columns = 60 subsets). Contrast this with

the languages at the top of the 25x4 language domain. Languages at the top of the

25x4 language domain have 96 subsets each (24 rows x 4 columns = 96 subsets).

There are more languages that need to be eliminated on average in the 25x4 language

domain as compared to the Skewed language domain. Each branch of the Skewed

language domain is isolated from the other branch. This results in fewer subsets that

need to be eliminated for languages located in either branch of the Skewed language

domain.

 127

4.4.2.2 Retrench Learner Results

Language
Domain

Avg Height Avg
Sentences

Avg 99%
for

Sentences

Avg Parses Avg 99%
for Parses

5-45-45-5 1.50 30.51 111.36 796.63 2836.28

Skewed 6.56 28.55 99.04 108.81 328.36

50x2 24.50 49.22 177.50 131.61 335.20

25x4 12.00 48.77 175.99 131.14 372.90

10x10 4.50 46.42 172.94 228.80 745.87

4x25 1.50 38.88 139.46 638.04 2243.80

2x50 0.50 26.21 93.63 705.93 2495.01

Table 6: Retrench learner results across language domains.

For parses, the Retrench learner did best on taller as opposed to wider lattices (see

Table 6). In order for the Retrench learner to safely hypothesize a given language it is

necessary for it to hypothesize every immediate subset of that given language. For

example, each language in the top row of the 2x50 language domain requires the

learner to check all 50 subsets before the learner can safely hypothesize it. There is a

lower bound of 50 parses for each language in the top row of the 2x50 language

domain. Similarly, each language in the top row of the 5-45-45-5 language domain

has a lower bound of 45 before each can be safely hypothesized. Retrench learner

efficiency is worse for the 5-45-45-5 language domain because neither of the 45 wide

 128

rows is at the bottom of the lattice. This causes a big problem for the five languages

located in the top row of the lattice.

Location In Lattice Sents Avg Parses Avg

Top Row of 5 95.32 3013.31

Upper Row of 45 51.19 1382.72

Lower Row of 45 5.94 52.25

Bottom Row of 5 0.80 4.52

Table 7: Retrench learner results with languages grouped by row for the 5-45-45-5
language domain.

The results in Table 7 show that languages in the top row of the 5-45-45-5 language

domain are very hard for the Retrench learner to acquire. The Retrench learner’s

efficiency suffers due to the large width of the two middle rows of the lattice. For

example, suppose the target language is located in the top row of 5 languages, call it

language A. Language A has 95 ambiguous sentences and only one unambiguous

sentence. Of the 95 ambiguous sentences, 45 of them represent subset-free triggers

for languages in the upper row of 45. Another 45 represent subset-free triggers for

languages in the bottom row of 45. And finally, 5 of them represent subset-free

triggers for languages in the bottom row of 5 languages. Now suppose the learner is

presented with an input sentence that is a subset-free trigger for one of the languages

in the upper row of 45 languages, call it language B. The learner will be required to

parse the input sentence with all 45 of language B’s direct subsets before it can safely

hypothesize language B. None of the other grammars in the upper row of 45 succeed

 129

in parsing the current input sentence and the learner will be free to hypothesize

language B. The learner has just performed 45 parses on one input sentence and

settled on hypothesizing language B and it is not even the target language. When

trying to acquire language A, 47% (45 subset-free triggers from upper row of forty-

five/96 total sentences in language A) of the sentences available to the learner will

cause this scenario to happen. Another 52% (50 sentences in bottom two rows/96

total sentences) of the sentences, which are comprised of the subset-free triggers in

the bottom two rows, will force the learner to hypothesize a language other than the

target language. The computational cost required by the Retrench learner to

hypothesize languages in one of the bottom two rows is small when compared to

languages in the upper row of 45. The problem with hypothesizing languages in the

bottom two rows is that they are not the target language (in this example) and the

learner will be required to get another input sentence from the learning environment.

The next input sentence will again have a 47% chance of being a subset-free trigger

of language B or one of the other languages on the upper row of 45. The Retrench

learner will spend a large amount of time in the bottom 95% of this particular lattice

structure.

For sentences, the Retrench learner performed best on the 2x50 language domain.

This is in contrast to the poor learner efficiency which resulted when parses were

used as the metric. When the number of sentences is used to determine learner

efficiency all parsing cost can be ignored. The large performance cost incurred as a

result of parsing subsets of the target is not factored into the sentence performance

 130

measure. There is also a better chance of selecting a subset-free trigger of the target

language when using the 2x50 language domain as opposed to the 25x4 language

domain. For the 2x50 language domain, the average percentage of subset-free triggers

for all languages in the domain is 51 percent ((1/51 + 1/1) / 2). For the 25x4 language

domain, the average percentage of subset-free triggers for all languages is only 7

percent ((1/97+1/93+…+1/4+1/1)/25). The Retrench learner requires subset-free

triggers in order to hypothesize the target and it will encounter a higher percentage of

subset-free triggers when learning in the 2x50 language domain as opposed to the

25x4 language domain.

The Retrench learner performs dramatically better on taller lattices when using parses

as the metric and better on wider lattices when using sentences as the metric. The cost

of parsing direct subsets in a wide lattice seems to outweigh the cost of deep

retrenchment that may occur in tall lattices.

 131

4.4.2.3 Total Ordering Learner Results

Language
Domain

Avg Height Avg
Sentences

Avg 99%
for

Sentences

Avg Parses Avg 99%
for Parses

5-45-45-5 1.50 28.85 106.12 637.79 2261.31

Skewed 6.56 24.22 88.27 161.02 382.52

50x2 24.50 41.67 141.17 263.85 599.02

25x4 12.00 42.14 154.65 280.96 673.91

10x10 4.50 41.40 145.52 354.43 1021.84

4x25 1.50 36.46 134.51 549.37 1868.82

2x50 0.50 25.14 88.29 676.50 2354.64

Table 8: Total Order learner results across language domains.

The Total Ordering learner also performed best on the Skewed language domain. The

reason for this may be because the Skewed language domain has a lower average

number of subsets compared to most of the other language domains. The main

problem for the Total Ordering learner may be coming from its inability to disconfirm

incorrect hypotheses. Figure 40 shows an example of a target language that is hard for

the Total Ordering learner to acquire.

 132

Figure 40: Target language that is hard for the Total Ordering learner to acquire.

In this example, the target language and two possible hypothesis languages are

shown. Both the subset hypothesis and the properly intersecting hypothesis will be

hard for the Total Ordering learner to give up because they both overlap with the

target language to a large degree. The properly intersecting languages are a concern

for the Total Ordering learner because those languages have to be considered as

hypotheses when they appear before the target in the enumeration. In contrast, the SP

Lattice learner is not required to consider the properly intersecting languages,

therefore it is not as affected by them as the Total Ordering learner is.

Wider language domains with many subset-superset relationships will cause this

problem to occur for the Total Ordering more than taller language domains. The 2x50

language domain is particularly hard for the Total Ordering learner because the

 133

languages in the top row are all properly intersecting and have a large amount of

overlap between them.

4.4.2.4 Total Ordering Constrained Memoryless Learner Results

Language
Domain

Avg Height Avg
Sentences

Avg 99%
for

Sentences

Avg Parses Avg 99%
for Parses

5-45-45-5 1.50 313.53 502.08 339.02 527.59

Skewed 6.56 77.01 145.70 102.82 171.68

50x2 24.50 132.66 255.07 158.89 281.58

25x4 12.00 134.64 255.33 160.71 281.68

10x10 4.50 172.36 339.15 198.12 365.06

4x25 1.50 270.48 475.19 296.08 500.72

2x50 0.50 337.01 521.37 362.22 546.59

Table 9: Total Ordering Constrained Memoryless learner results across language
domains.

The performance of the Total Ordering Constrained Memoryless learner was similar

to the other learners. Again, the Skewed language domain was easiest to learn while

the 2x50 language domain was the hardest. This learner encountered problems similar

to those seen in the Total Ordering learner.

 134

4.4.2.5 SP Lattice Flashlight Learner Results

Language
Domain

Avg Height Avg
Sentences

Avg 99%
for

Sentences

Avg Parses Avg 99%
for Parses

5-45-45-5 1.50 311.01 519.95 336.50 546.21

Skewed 6.56 76.23 161.09 101.86 188.21

50x2 24.50 131.54 258.93 157.54 285.61

25x4 12.00 134.23 295.90 160.30 322.69

10x10 4.50 171.62 373.97 197.38 400.86

4x25 1.50 268.46 499.82 294.07 526.75

2x50 0.50 336.50 541.61 361.71 568.45

Table 10: SP Lattice Flashlight learner results across language domains.

The SP Lattice Flashlight learner also performed best on the Skewed language

domain and worst on the 2x50 language domain. The results were similar to the other

learners.

 135

4.4.2.6 Discussion

In terms of the number of parses, all of the learners had almost the same relative order

of performance for all of the language domains (see Table 11).

 SP Lattice Retrench Total
Ordering

Total
Ordering

Constrained

Flashlight

1 Skewed Skewed Skewed Skewed Skewed

2 50x2 25x4 50x2 50x2 50x2

3 25x4 50x2 25x4 25x4 25x4

4 10x10 10x10 10x10 10x10 10x10

5 4x25 4x25 4x25 4x25 4x25

6 5,45,45,45 2x50 5,45,45,45 5,45,45,45 5,45,45,45

7 2x50 5,45,45,45 2x50 2x50 2x50

Table 11: Relative performance of learners on language domains in terms of the
number of parses (fastest (1) to slowest (7)).

Table 11 illustrates which language domains were easiest and hardest to learn for

each learner under investigation. For example, the SP Lattice learner performed best

on the Skewed language domain and worst on the 2x50 language domain. Overall, the

very wide language domains were the hardest to learn while the taller language

domains were easier. Why might this be so? On the surface it would seem that

language domains with a lower average number of subsets per language would be

easier to learn but interestingly this was not the case (see Table 12).

 136

Language Domain Shape Average Number of Subsets Per
Language

50x2 49.0

25x4 48.0

10x10 45.0

4x25 37.5

5-45-45-5 30.0

Skewed 28.0

2x50 25.0

Table 12: Average number of subsets per language by language domain.

The Skewed language domain was the easiest to learn while the 2x50 language

domain was the hardest yet they both had roughly the same average number of

subsets per language. The shape of the language domain was the main reason for the

difference in performance. Why is the 2x50 language domain so hard to learn for all

of the learners? For this language domain there is a great disparity in the learning

times for languages in the top row as compared to languages in the bottom row across

all of the learners (see Table 13).

 137

 SP Lattice Retrench Total
Ordering

Total
Ordering

Constrained

Flashlight

Top
Row

701.56 1385.21 1327.52 699.43 698.36

Bottom
Row

24.78 26.65 25.48 25.00 25.06

Table 13: Average number of parses for languages in either the top or bottom row of
the 2x50 language domain.

The wide shape of this language domain caused problems for all of the learners under

investigation. For languages in the top row, there are many subsets that need to be

either hypothesized or at least evaluated as well as lots of properly intersecting

languages that can be hard to disconfirm. These factors impacted all of the learners

although the degree to which either of these factors impacted a given learner varied.

4.5 Properly Intersecting Language Domains

This section will examine how domain ambiguity affects learner performance. The

language domains under investigation in this section do not have any languages in

subset-superset relationships. High ambiguity language domains contain very few

unambiguous sentences. Figure 41 gives an example of a highly ambiguous language

domain.

 138

Figure 41: Language domain with high domain ambiguity.

Most of the sentences of each language in Figure 41 belong to at least one other

language in the domain. Sentences S7 through S10 belong to every language of the

domain and provide very little information that the learner can use to determine the

target language. Sentences S4 through S5 are not members of every language but they

are still ambiguous. They may contain some information that the learner can use.

Sentences S1 through S3 are unambiguous with respect to the languages they belong

to and should provide the learner with the most information. Figure 42 gives an

example of a language domain with low domain ambiguity.

 139

Figure 42: Language domain with low domain ambiguity.

Most of the sentences in this language domain are unambiguous. Only sentence S10

belongs to more than one language. In this section several learners will be run on

language domains containing varying amounts of domain ambiguity in order to

investigate the effects of domain ambiguity on learner efficiency.

4.5.1 Description of Properly Intersecting Language Domains

Each of the properly intersecting language domains contains 100 languages. These

language domains will vary according to the average percentage of unambiguous

sentences for languages in the domain. For example, the average percentage of

unambiguous sentences for the languages depicted in Figure 41 is 14%. Each

language in the domain contains seven sentences, only one of which is unambiguous

 140

(1/7 = .14 = 14%). The average percentage of unambiguous sentences for the

language domain given in Figure 42 is 75% (3/4 = .75 = 75%). Each language in the

domain contains four sentences, three of which are unambiguous. A language domain

with a high average percentage of unambiguous sentences means that most of the

sentences in a given language belong only to that language. Language domains with

low average percentages of unambiguous sentences contain languages with many

sentences that are members of more than one language.

4.5.2 Learner Performance On Properly Intersecting Language Domains

In Table 14 through Table 18, we give results for each learner on each of the properly

intersecting language domains.

Pct Of
Unambiguous

Sentences

Avg Sentences Avg 99% for
Sentences

Avg Parses Avg 99% for
Parses

4% 160.47 474.07 190.00 519.55

12% 39.52 86.91 65.60 135.52

34% 27.33 54.17 52.79 103.07

51% 25.67 50.21 50.74 98.92

84% 25.06 48.70 50.06 97.28

99% 25.16 48.49 50.32 96.98

Table 14: SP Lattice learner results across properly intersecting language domains.

 141

Pct Of
Unambiguous

Sentences

Avg Sentences Avg 99% for
Sentences

Avg Parses Avg 99% for
Parses

4% 87.45 405.51 96.98 428.09

12% 9.84 40.20 13.13 48.26

34% 2.62 8.93 4.51 13.55

51% 1.69 4.90 3.15 8.13

84% 1.09 2.13 2.17 4.12

99% 1.00 1.00 1.98 2.00

Table 15: Retrench learner results across properly intersecting language domains.

Pct Of
Unambiguous

Sentences

Avg Sentences Avg 99% for
Sentences

Avg Parses Avg 99% for
Parses

4% 15.48 45.68 126.27 224.00

12% 4.65 12.44 67.17 95.46

34% 2.03 4.80 54.19 63.36

51% 1.48 2.94 51.91 56.13

84% 1.08 1.62 50.69 51.90

99% 1.00 1.00 50.49 50.49

Table 16: Total Ordering learner results across properly intersecting language
domains.

 142

Pct Of
Unambiguous

Sentences

Avg Sentences Avg 99% for
Sentences

Avg Parses Avg 99% for
Parses

4% 78.59 121.20 108.18 151.12

12% 36.05 47.04 62.37 73.59

34% 27.15 30.83 52.59 56.67

51% 25.74 27.57 50.93 53.06

84% 25.09 25.57 50.11 50.73

99% 25.00 25.00 50.00 50.00

Table 17: Total Ordering Constrained Memoryless learner results across properly
intersecting language domains.

Pct Of
Unambiguous

Sentences

Avg Sentences Avg 99% for
Sentences

Avg Parses Avg 99% for
Parses

4% 83.81 159.65 113.26 190.59

12% 36.28 50.41 62.60 78.54

34% 27.12 32.37 52.51 60.14

51% 25.72 29.34 50.89 57.03

84% 25.11 27.76 50.15 55.34

99% 24.98 27.53 49.97 55.06

Table 18: SP Lattice Flashlight learner results across properly intersecting language
domains.

 143

For every learner, learner efficiency was better for language domains with a higher

percentage of unambiguous sentences and worse for language domains with a lower

percentage of unambiguous sentences. Incremental changes in unambiguous sentence

percentage affect learner efficiency more for low percentages. For each learner, the

largest difference in computational efficiency for all metrics occurred between the

language domains containing 4% unambiguous sentences and 12% unambiguous

sentences. Increasing the percentage of unambiguous sentences past 34% did not

significantly impact learner performance for the learners under investigation. It would

seem that learners greatly benefit from increases in the percentage of unambiguous

sentences to a point. There are diminishing returns for increases in the average

number of unambiguous sentences past 34%. A percentage of 34% means that at least

one-third of the sentences encountered by the learner will be unambiguous. The

learner will quickly disconfirm incorrect hypotheses due to the unambiguous input

and quickly move through the search space towards the target language.

4.6 Discussion

This preliminary investigation into the effects of language domain shape on SP-

learner efficiency seems to indicate that the shape of the language domain does have

an effect. Why does it have an effect? In some aspects, the shape of the language

domain affects domain ambiguity. If a language has many subsets then the language

necessarily overlaps those subset languages resulting in domain ambiguity. We have

shown that domain ambiguity affects SP-learner performance therefore it is logical to

 144

conclude that shape will affect learner performance as well. More importantly, our

learners are required to abide by the Subset Principle. Faithful application of the

Subset Principle is what makes language domain shape an issue. The Subset Principle

forces learners to make safe hypothesis selections with respect to superset errors. For

example, the Retrench learner (see section 2.3.8 Retrench Learner) must check all of

a language’s direct subsets before it can safely hypothesize that language. If a

language has many direct subsets then the Retrench learner will necessarily be doing

a lot of parsing in the name of the Subset Principle. On the other hand, if that

language has many subsets but most of those subsets are indirect then it will not have

to do as much parsing to hypothesize that language. In Figure 43, language A is hard

for the Retrench learner to hypothesize because it must check all 6 subsets before it

can safely hypothesize it.

Figure 43: Language shape that is hard for the Retrench learner.

In Figure 44, language A is easier for the Retrench learner to hypothesize because it

does not need to check all 6 subsets. It only has to check its two direct subsets.

 145

Figure 44: Language shape that is easy for the Retrench learner.

Domain ambiguity gives an indication of how hard it may be to learn a language

domain but it does not give the full picture. There are subset-superset dependencies

that must be considered in order to abide by SP. The shape of the language domain

will directly affect the computational cost of SP compliance. Depending on the

learner, the effects of language domain shape could be offset somewhat by the

distribution of subset-free triggers and unambiguous triggers in the language domain

although the shape will force lower bounds on computational cost no matter what the

distribution of subset-free triggers and unambiguous triggers happens to be.

Overall, the current research indicates that language domains containing more breadth

are harder to learn than language domains containing more depth. When abiding by

the Subset Principle the learner is better off navigating a language domain containing

vertical chains of subset/supersets as opposed to horizontal ones. It should be noted

that this result does not take into account the connectedness of the language domain.

 146

The current research was done using language domains that have a high degree of

connectivity.

This research is only a first step in examining the effects of language domain shape

on learner efficiency. There are many variables related to language domain shape that

should be manipulated and evaluated in order to provide a more complete analysis.

For example, the shapes of the language domains presently under investigation

contain a high degree of connectedness. Each language in each row is a superset of

each language in the row below it except in the case of the Skewed language domain.

Interestingly, the Skewed language domain was the easiest to learn of all the language

domains. The Skewed language domain forces a natural break in the domain,

reducing the overall connectivity. Language domains that vary according to this type

of connectivity should be investigated. Another variable that should be analyzed is

domain ambiguity within the subset-superset language domains. Language domains

should be created that vary the amounts of subset-free triggers and unambiguous

triggers for languages in the domain. In addition, larger language domains as well as

language domains that are linguistically plausible should be investigated with regards

to language domain shape.

 147

5 Conclusions, Implications and Future Research

This thesis provides a study of computational models of first language acquisition that

implement the Subset Principle (SP). Importantly, a central concern throughout was

the effect of constraining the learning algorithms to the extent that they make use of a

psychologically viable amount of computational resources. The research presents:

• An empirical analysis of eight SP-compliant simulated language learners

designed to exploit the partial ordering of subset inclusion in a

psychologically feasible abstract language domain (the CoLAG domain).

• A comparison of these learners against learners that use a total ordering (full-

enumeration) of all the languages in the domain in which subsets are posited

before supersets to guide learning.

• An analysis of how the arrangement of the partial ordering of different

language domains, what we call the domain's "shape", affects the performance

of SP-compliant simulated language learners.

5.1 Summary of Findings

The central results of this thesis are the following:

 148

• The hypothesis selection strategy of giving equal priority between the parser

and SP-compliance works best. This is because this strategy directly focuses

its attention to both viable hypotheses in terms of SP, and viable hypotheses

in terms of the hypotheses' ability to license the input the learner encounters.

The other SP-compliant learners examined in this thesis prioritized search

strategies to either identify safe subset hypotheses or to find compatible

hypotheses. This prioritization comes at a substantial cost.27 Unfortunately

this learner gets "for free" knowledge of which combinations of parameter

values instantiate a guaranteed smallest subset language. However, linguistic

research on syntactic parameters has shown that parameter values often

interact in complex ways. So it wouldn't be trivial for the learner to come by

this knowledge. Given parameter interaction, in effect, the learner would have

to calculate the smallest language status of each of the 2n languages in the

domain (where n is the number of parameters). Still, the strong performance

of this strategy would suggest that perhaps it would be worthwhile to develop

a linguistically viable parametric system where subset parameter values are

known or easily accessible.28

• Partial ordering learners outperformed total ordering learners in terms of the

number of parses. The thesis makes an argument for using number of parses

rather than number of sentences as a metric to measure workload since it

27 Though other work described in Chapter 3 and briefly below indicates that the cost overall is not as
extensive as the cost incurred by using a total-enumeration of a lattice.

28 Note that the Decode Favor Unmarked learner (2.3.4 Decode Favor Unmarked Learner) would
reduce to this learner if the linguistics of the CoLAG domain matched this description.

 149

takes into account the computational effort expended during parsing an input

sentence or sentences. The Total Ordering learner must parse every input

sentence in the memory store each time it tests the next candidate grammar in

the total ordering (enumeration). Since the learners must test each and every

language up to the target language in the enumeration against its memory

store, the parsing workload is tremendous for the Total Ordering learners

when the target is more than a few grammars in from the beginning of the

enumeration. Parsing workload is an element of the Gold paradigm that is

largely overlooked. This result solidifies points made in discussion of the

issue by Fodor and Sakas (2005) (cf. Pinker, 1979) and indicates that a partial

ordering of subset-superset relationships is a beneficial advance over

identification by enumeration.

• As a preliminary result, language domains which have large breadth are

harder to learn than language domains which have large depth. This result is a

consequence of SP implementation in the various learners under study. By

definition, a language domain with large breadth has more sister nodes at each

level in the lattice compared with a domain with large depth which has few

nodes at each level. In general, to implement SP, i.e., to insure that the target

is safe to adopt, at the very least all direct subset languages of the target must

be considered in some fashion or another. For domains with large breadth this

is computationally expensive beyond what is required to go deep into a

narrow tall lattice. It is probably the case that the domain of natural languages

 150

is wider than it is tall; in fact this is the case with the CoLAG domain. This

would lead to the conjecture that psychologically plausible learners must be

adept at handling domains where supersets contain a multitude of sister

subsets.

5.2 Future Research

There are many areas of research that can be pursued with respect to the current

research. In this thesis we added memory for past grammars to simulated language

learners. It would be interesting to analyze the effects of adding an input sentence

memory store, such as the one used by the Total Ordering learner, to our SP-

compliant simulated language learners. Would the input sentence memory store

increase performance or would performance ultimately suffer due to the extra

computational load caused by use of the input sentence memory store? The size of the

input sentence memory store could also be varied, i.e., an infinite store as in Gold’s

(1967) paradigm, or bounded by a certain number of sentences. For example, the

simulated language learner might only store the last five sentences that it was

presented with. This would offset some of the extra computational load that is

incurred by checking all of the sentences that the learner has encountered. The input

sentence memory store could also be used selectively. For example, only use the

memory store when the current input sentence cannot be parsed by a candidate

grammar. If the current input sentence cannot be parsed by a candidate grammar there

is no reason to take the performance hit incurred by checking the other sentences in

 151

the memory store, since that candidate is not the target language. Adding an input

memory store could create a more efficient simulated language learner that is a more

accurate model of first language acquisition.

Another area of research would be to perform a comparison study between our SP-

compliant learners and Yang’s Naïve Parameter Learner (NPL) on the CoLAG

domain. The NPL is widely accepted in the research community as a plausible model

of first language acquisition. In contrast to our SP-compliant learners, the NPL does

not use the Subset Principle to avoid superset hypothesis. It depends on statistics to

allow it to "retreat" from superset errors. Pilot studies we have conducted show that

the NPL when tested on the CoLAG domain which contains languages that are in

subset-superset relationships, takes a substantially larger number of parses to

converge on the target grammar than learners that have an SP avoidance strategy

'hardwired' and available for use, though a comprehensive set of simulation runs and

analysis of the resulting data remains a project for the future.

In this thesis we only performed a preliminary investigation of the effects of language

domain shape on learner performance. There are additional variables that need to be

taken into account in order to give a more detailed analysis of the relationship. For

example, the subset-superset language domains used in this research do not have

properly intersecting languages. Since previous studies have shown that the amount

of overlap between languages (a measure of domain ambiguity) can drastically affect

learning performance, it seems a reasonable next step to include this as a factor in

 152

future work. In addition, different language domains should be created that vary the

amount of intersection between these properly intersecting languages. Varying the

connectivity of the lattice is another area to investigate. Each of the rows in the

language domains investigated in this thesis were fully connected, i.e., a language in

one row was a superset of all of the languages in the row directly below. An

interesting target of study would be to see how well the learning efficiency of the SP-

compliant learners studied in this thesis fare in domains that exhibited sparsely

connected partial orderings of its languages.

 153

Appendix A – Miscellaneous Procedure Descriptions

Environment.GetAnInput():
Selects a sentence at random from the target. Returns the randomly selected
sentence.

Environment.SetupTargetLanguage(GrammarID, LanguageDomain)

Gathers all the sentences of the target language and stores them in a member
variable of the Environment class.

Flashlight.Reward(GrammarID):
 Rewards all supersets of the given grammar.

GetParseGrammarIDs(Sentence):

Gets the set of grammar IDs corresponding to the grammars that can parse the
given sentence. Returns a set of grammar IDs.

LanguageDomain.PickRandomGrammar():
 Chooses a grammar at random. Returns a grammar ID.

Lattice.GetLargestLanguages():
 Gets the set of largest language grammar IDs. Returns a set of grammar IDs.

Lattice.GetSmallestLanguages():
 Gets the set of smallest language grammar IDs. Returns a set of grammar IDs.

Lattice.GetSubsetIDs(GrammarID):
 Get the subset IDs of a given grammar ID. Returns a set of grammar IDs.

Lattice.IsAMemberOfSL(GrammarID):
 Is the given grammar ID a member of the current smallest language set.

Lattice.PickRandomGrammarFromSmallestLanguages():

Randomly picks a grammar from the current set of smallest languages in the
lattice. Returns a grammar ID.

Lattice.Remove(GrammarID):
 Removes a given grammar from the lattice.

Lattice.RemoveIncludingAllDescendents(Set):

Removes all grammar IDs in the given set from the lattice. All descendents of
each grammar ID in the given set are also removed from the lattice.

 154

Learner.PickNextHypothesis(SearchSpace, Environment):
Full descriptions of each learner’s override of this procedure will be given
later in the dissertation.

Learner.Reset():

Resets a learners state for a new trial. The implementation of this procedure
will depend on the learning algorithm. For example, the lattice learners will
need to reset the lattice by adding back all removed grammars.

Learner.SetFirstHypothesis():

Sets the initial grammar hypothesis. The implementation of this procedure
will depend on the learning algorithm. For example, some of the lattice
learners will choose a grammar at random from the smallest language set.

Licensed(Sentence, GrammarID):
 Determines whether or not the given grammar can parse the given sentence.
 Returns true if the grammar can parse the sentence and false otherwise.

Oracle.AttainedTarget(GrammarID):

Determines whether a given grammar ID is the target. Returns true if the
given grammar ID is the target or weakly equivalent to the target and false
otherwise.

Oracle.Setup(GrammarID):
 Gathers grammars that are weakly equivalent to the target grammar.

PickRandomGrammarFromSet(GrammarIDSet):

Picks a grammar at random from a given set of grammar IDs. Returns a
grammar ID.

SearchSpace.ResetForTrial():

Resets the search space for a new trial. All grammars in the language domain
are put back into the search space.

Set.Add(Element):
 Adds the given element to the set.

SetDifference(Set, Set):

Calculates the difference between the two sets. The second set is subtracted
from the first. Returns a set.

SetIntersect(Set, Set):
 Calculates the intersection of the two given sets. Returns a set.

 155

Simulation::CreateLearner():
Creates an instance of a given learner. The type of learner instance to create is
read in from a file.

SPLatticeDecodeFavorUnmarked.PerformSerialParseChoosingUnmarked(Sentence):

Perform a serial parse on the given sentence choosing unmarked values at
choice points. Returns the grammar ID of the generated parse.

SPLatticeFlashlight.GetGrammarWithHighestRewardFromSL():

Get the grammar with the highest reward value from the smallest language
set. Returns a grammar ID.

TotalOrderingLearner.AddSentence(Sentence):

Adds a sentence to the collection of sentences that have been presented to the
learner so far.

TotalOrderingLearner.LicensedAll(GrammarID):

Is the given grammar ID licensed by all the input sentences presented to the
learner so far. Returns true if all sentences are licensed by the given grammar
ID and false otherwise.

TotalOrdering.MoveToNextGrammarHypothesis():
Moves the current grammar hypothesis pointer to the next item in the
enumeration and returns that item. Returns a grammar ID.

 156

Appendix B – Pseudocode Guide

All capitalized words are keywords.

CLASS/ENDCLASS: Used to define a class.

ABSTRACT: Modifies a class definition. Used to define an abstract class. This type

of class cannot be instantiated.

INHERITS: Modifies a class definition. Used to define a class that inherits from

another class.

VIRTUAL: Modifies a class procedure definition. Used to define a virtual procedure.

CLASSPROCDURES/ENDCLASSPROCEDURES: Block used to define class level

procedures.

CLASSVARIABLES/ENDCLASSVARIABLES: Block used to define class level

variables.

PROCEDURE/ENDPROCEDURE: Used to define a function or procedure. May or

may not return a value.

DECLARE: Declares a variable. Variables declared within a procedure are local to

that procedure.

RETURN: Used to return from a procedure.

IF/THEN/ELSE/ENDIF: If statement block. Code is run only if the given boolean

condition evaluates to true.

WHILE/ENDWHILE: Looping block. The boolean test is at the beginning.

DO/WHILE: Looping block. The boolean test is at the end. The code is guaranteed to

be run at least once.

FOREACH/ENDFOREACH: Looping block. Used to define a for loop.

: Assignment

/*: Start comment

*/: End comment

 157

References

Angluin, D. (1980). Inductive Inference of Formal Languages from Positive Data.
Information and Control 45. 117-135.

Becker, M. (2006). There Began to be a Learnability Puzzle. Linguistic Inquiry 37.
441-456.

Bertolo, S. (2001). A Brief Overview of Learnability. In S. Bertolo (Ed.), Language
Acquisition and Learnability. 1-14. Cambridge, UK: Cambridge University Press.

Berwick, R. (1985). The Acquisition of Syntactic Knowledge. Cambridge, MA: MIT
Press.

Berwick, R. & Niyogi, P. (1996). Learning From Triggers. Linguistic Inquiry 27.
605-622.

Briscoe, E. (2000). Grammatical Acquisition: Inductive Bias and Coevolution of
Language and the Language Acquisition Device. Language 76. 245-296.

Chomsky, N. (1957). Syntactic Structures. Mouton: The Hague.

Chomsky, N. (1980). On Binding. Linguistic Inquiry 11. 1-46.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris.

Chomsky, N. (1982). Some Concepts and Consequences of the Theory of Government
and Binding. Cambridge, MA: MIT Press.

Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use. New
York: Praeger.

Clark, R. (1992). The Selection of Syntactic Knowledge. Linguistic Acquisition 2. 83-
149.

Fodor, J. (1998a). Parsing To Learn. Journal of Psycholinguistic Research 27. 339-
374.

Fodor, J. (1998b). Unambiguous Triggers. Linguistic Inquiry 29. 1-36.

Fodor, J., Melnikova, Y. & Troseth, E. (2002). A Structurally Defined Language
Domain for Testing Syntax Acquisition Models. CUNY-CoLAG Working Paper #1.
City University of New York. At the website of the CUNY Computational Language
Acquisition Group

 158

Fodor, J. & Sakas, W. (2004). Evaluating Models of Parameter Setting. In A. Brugos,
L. Miciulla & C. Smith (Eds.), BUCLD 28: Proceedings of the 28th Annual Boston
University Conference on Language Development, Cascadilla Press, Somerville, MA,
1-27.

Fodor, J. & Sakas, W. (2005). The Subset Principle in Syntax: Costs of Compliance.
Journal of Linguistics 41. 1-57.

Fodor, J., Sakas, W. & Hoskey, A. (2007). Implementing the Subset Principle in
Syntax Acquisition: Lattice-Based Models. In S. Vosniadou, D. Kayser & A.
Protopapas (Eds.), Proceedings of the European Cognitive Science Conference 2007,
Taylor and Francis, Delphi, Greece.

Fodor, J. & Teller, V. (2000). Decoding Syntactic Parameters: The Superparser as
Oracle. Proceedings of the Twenty-Second Annual Conference of the Cognitive
Science Society, Philadelphia, PA, 136-141.

Gibson, E. & Wexler, K. (1994). Triggers. Linguistic Inquiry 25. 407-454.

Gold, M. (1967). Language Identification in the Limit. Information and Control 10.
447-474.

Inoue, A. & Fodor, J. (1995). Information-Paced Parsing of Japanese. In Mazuka &
Nagai (Eds.), Japanese Sentence Processing. Hillsdale, NJ: Lawrence Erlbaum.

Joshi, A. (1994). Commentary: Some Remarks on the Subset Principle. In B. Lust, G.
Hermon & J. Kornfilt (Eds.), Syntactic theory and first language acquisition: cross-
linguistic perspectives (vol. 2). Hillsdale, NJ: Larwrence Erlbaum.

Kapur, S., Lust, B., Harbert, W. & Martohardjono, G. (1993). Universal Grammar
and Learnability Theory: The Case of Binding Domains and the ‘Subset Principle’. In
R. Reuland & W. Abraham (Eds.), Knowledge and Language, Volume I, From
Orwell’s Problem to Plato’s Problem. Dordrecht: Kluwer.

MacLaughlin, D. (1995). Language Acquisition and the Subset Principle. Linguistic
Acquisition 12. 143-191.

Manzini, R. & Wexler, K. (1987). Parameters, Binding Theory, and Learnability.
Linguistic Inquiry 18. 413-444.

Niyogi, P. & Berwick, R. (1996). A Language Learning Model for Finite Parameter
Spaces. Cognition 61. 161-193.

Pinker, S. (1979). Formal Models of Language Learning. Cognition 7. 217-283.

 159

Sakas, W. (2000a). Ambiguity and the Computational Feasibility of Syntax
Acquisition. Doctoral Dissertation,City University of New York.

Sakas, W. (2000b). Modeling the Effect of Cross-Language Ambiguity on Human
Syntax Acquisition. In Proceedings of the joint meeting of the 4th Computational
Natural Language Learning Workshop (CoNLL-2000) 2nd Learning Language in
Logic Workshop and 5th International Colloquium on Grammatical Inference,
Association for Computational Linguistics, Lisbon.

Sakas, W. (2003). A Word-Order Database for Testing Computational Models of
Language Acquisition. In E. Hinrichs & DanRoth (Eds.), Proceedings of the 41st
Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan,
415-422.

Sakas, W. & Fodor, J. (1998). Setting the First Few Syntactic Parameters - A
Computational Analysis. In Proceedings of the Twentieth Annual Conference of the
Cognitive Science Society, Lawrence Erlbaum Associates.

Sakas, W. & Fodor, J. (2000). Setting Syntactic Parameters: A Computational
Analysis of Child-directed Speech. CUNY Collaborative Incentive Research Grant.
City University of New York.

Sakas, W. & Fodor, J. (2001). The Structural Triggers Learner. In S. Bertolo (Ed.),
Language Acquisition and Learnability. 172-233. Cambridge, UK: Cambridge
University Press.

Sakas, W. & Nishimoto, E. (2002). Search, Structure or Statistics? A Comparative
Study of Memoryless Heuristics for Syntax Acquisition. In Proceedings of the 24th
Annual Conference of the Cognitive Science Society, Fairfax, VA, 786-791.

Valian, V. (1990). Logical and psychological constraints on the acquisition of syntax.
In L. Frazier & J. Villiers (Eds.), Language Processing and Language Acquisition.
Dordrecht: Kluwer.

Wexler, K. (1993). The Subset Principle is an Intensional Principle. In E. Reuland &
W. Abraham (Eds.), Knowledge and Language: Issues in Representation and
Acquisition. 217-239. Dordrecht: Kluwer.

Wexler, K. & Culicover, P. (1980). Formal Principles of Language Acquisition.
Cambridge, MA: MIT Press.

Wexler, K. & Manzini, R. (1987). Parameters and Learnability in Binding Theory. In
T. Roeper & E. Williams (Eds.), Parameter Setting. 41-76. Dordrecht: Reidel.

Yang, C. (2002). Knowledge and learning in natural language. New York: Oxford
University Press.

	 Table of Contents
	 List Of Tables
	 List of Figures
	
	
	1 Introduction
	 1.1 Formal Learning Theory in the Gold Paradigm
	1.1.1 Identification In The Limit
	1.1.2 Telltale Sets

	 1.2 Computational Models of Syntactic Parameter Setting
	
	1.2.1 Triggers
	1.2.1.1 Triggering Learning Algorithm
	1.2.1.2 The Deterministic Structural Triggers Learner

	1.2.2 Stochastic Methods
	1.2.2.2 Genetic Algorithm Learner
	1.2.2.2 Naïve Parameter Learner
	1.2.2.3 Guessing STL
	1.2.2.4 Probabilistic Components of the TLA

	1.2.3 Feasibility
	1.2.3.1 Learning From Triggers
	1.2.3.2 Ambiguity and the Computational Feasibility of Syntax Acquisition
	1.2.3.3 Modeling the Effect of Cross-Language Ambiguity on Human Syntax Acquisition
	1.2.3.4 Model Comparisons

	1.3 The Subset Principle
	
	1.3.1 Subset Principle Background
	1.3.1.1 Berwick
	1.3.1.2 Manzini and Wexler

	1.3.2 Arguments Against the Subset Principle
	1.3.2.1 Becker
	1.3.2.2 MacLaughlin

	1.3.3 Subset Principle Compliance
	1.3.3.1 The Shifting Problem
	1.3.2.2 The Simple Defaults Model
	1.3.3.3 The Ordered Defaults Model
	1.3.3.4 Effects of Incremental Learning
	1.3.3.5 Subset-free Triggers

	
	1.4 The Simulation Platform
	1.4.1 CoLAG Domain
	1.4.2 Simulation Program

	 2 Partial Ordering Learners
	2.1 Justification For Adding Memory For Disconfirmed Grammars
	2.2 General SP Lattice Learner
	2.3 SP Lattice Learner Variants
	2.3.1 Parallel Parsing Vs. Serial Parsing
	2.3.2 Decoding
	2.3.3 Decode Learner
	2.3.4 Decode Favor Unmarked Learner
	2.3.5 Integrated Learner
	2.3.6 Flashlight
	2.3.7 Largest Language Optimal Learner
	2.3.8 Retrench Learner

	 2.4 Results and Discussion
	2.4.1 LL Optimal Best For Sentences but Not Parses
	2.4.2 Integrated Learner Performs Best
	2.4.3 Higher Parsing Priority Hinders The Decode Learner
	2.4.4 CoLAG Is Unlearnable For The Decode Favor Unmarked Learner
	2.4.5 Impact of the Flashlight
	2.4.6 Retrench Learner Is Good But CoLAG Is Unlearnable
	2.4.7 The Parser and SP Work Best in Tandem

	 3 Comparison of Partial and Total Ordering Learners
	 3.1 Why Use A Partial Ordering?
	3.2 Total Ordering Learners
	3.3 Gold’s Total Ordering Learner
	3.4 Memoryless Total Ordering Learner
	3.5 Constrained Memoryless Total Ordering Learner
	3.6 Discussion and Results
	3.6.1 Total Ordering Learner Inefficient In Terms of Parses
	3.6.2 Effects of Removing Total Ordering Input Sentence Memory Store
	3.6.3 Constraining Total Ordering Learner Affects Performance
	3.6.4 Partial Ordering More Efficient Than Total Ordering

	 4 Effects of Language Domain Shape on Learning
	 4.1 Why Examine Language Domain Shape?
	4.2 Tall Vs. Wide Lattices
	4.3 Domain Ambiguity Within The Language Domains
	
	4.4 Subset Language Domains
	4.4.1 Description of Subset Language Domains
	4.4.1.1 Language Domain Shape - 5-45-45-5
	4.4.1.2 Language Domain Shape - Skewed
	4.4.1.3 Language Domain Shape – 10 x 10
	4.4.1.4 Language Domain Shape – 50 x 2
	4.4.1.5 Language Domain Shape – 25 x 4
	4.4.1.6 Language Domain Shape – 4 x 25
	4.4.1.7 Language Domain Shape – 2 x 50

	4.4.2 Performance Across Subset Language Domains
	4.4.2.1 SP Lattice Learner Performance Across Language Domains
	 4.4.2.2 Retrench Learner Results
	 4.4.2.3 Total Ordering Learner Results
	4.4.2.4 Total Ordering Constrained Memoryless Learner Results
	4.4.2.5 SP Lattice Flashlight Learner Results
	 4.4.2.6 Discussion

	4.5 Properly Intersecting Language Domains
	4.5.1 Description of Properly Intersecting Language Domains
	4.5.2 Learner Performance On Properly Intersecting Language Domains

	4.6 Discussion

	 5 Conclusions, Implications and Future Research
	5.1 Summary of Findings
	5.2 Future Research

	 Appendix A – Miscellaneous Procedure Descriptions
	 Appendix B – Pseudocode Guide
	References

