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Abstract: 

Psychocomputational Models of Subset Principle Compliance in Simulated 

Language Learning 

By 

Arthur Hoskey 

 

Advisor: Dr. William Gregory Sakas 

Previous research has proposed that any model of language learning should use the 

Subset Principle to guide hypothesis selection when the language domain contains at 

least two languages such that one is a subset of the other (Gold, 1967; Berwick, 1985; 

Manzini & Wexler, 1987; Wexler & Manzini, 1987). Informally, the Subset Principle 

states that the learner should select a language that: a) is compatible with the input 

data, and, b) does not properly contain any other language that is compatible with the 

input data. This thesis puts forth a comprehensive investigation of 

psychocomputational models of language learning that abide by the Subset Principle 

from both an empirical and theoretical perspective. We intend “psychocomputational 

models” to include computational models that are in line with research in 

psycholinguistics, developmental psychology and theoretical linguistics (Sakas, 

2004). This thesis is divided into three principal areas: 1) an analysis of partial 

ordering learners which are given a priori knowledge of subset-superset relationships, 

2) a comparison of those partial ordering learners and variants of traditional Gold-

paradigm total ordering (enumeration) learners, and 3) a preliminary investigation 

into how the shape of the language domain, in terms of both the partial ordering of 



 v

subset-superset relationships and cross-language ambiguity, affects learning 

performance of learners that abide by the Subset Principle. Results show that the 

partial ordering learners perform best when Subset Principle constraints and parsing 

are given equal weight with regards to hypothesis selection. The comparison study 

shows that the partial ordering learners outperform the total ordering learners. Finally, 

preliminary results stemming from the investigation of language domain shape 

indicate that language domains exhibiting greater breadth than depth are more 

computationally demanding to learn. Although there exists a number of 

computational studies that attempt to address the problems that are introduced when 

learning in domains that contain superset languages, this research makes its 

contribution by modeling the Subset Principle under assumptions that are 

psychologically realistic in terms of the computational workload required of the 

learning algorithms under investigation. 
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1 Introduction 

 

The main goal of this research is to investigate psychocomputational models of 

learning that abide by the Subset Principle (SP). First proposed by Gold (1967), 

though the term is generally attributed to Berwick (1985), Manzini and Wexler 

(1987) and Wexler and Manzini (1987). We will use Fodor and Sakas (2005) 

definition of SP. Note that for Fodor & Sakas a smallest language means a language 

in a learning domain that does not properly contain any other language in the domain 

(i.e., a smallest language does not contain a subset language).  

 

When the learning mechanism’s current language is incompatible with a new 

input sentence i, the learning mechanism should hypothesize a UG-compatible 

language which is a smallest superset of i and all prior input sentences 

retained in its memory, excluding any language recorded in memory as having 

been disconfirmed by prior input. 

Fodor and Sakas (2005) 

The Subset Principle will be used to help the learners navigate the search space. SP is 

a rule that learners employ in order to avoid getting stuck in a state from which they 

cannot escape. The need for SP arises when a language domain contains two 

languages such that one is a subset of the other. Most, if not all, computational 

models of human language learning at the present time do not abide by the Subset 

Principle (see discussion in Gibson and Wexler, 1994; Sakas and Fodor, 2001). There 

is an abundance of research that shows that it is difficult for a learner to navigate the 
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search space of possible languages to find the target language, even with supersets of 

the target removed (Clark, 1992; Gibson and Wexler, 1994; Briscoe, 2000; Sakas and 

Fodor, 2001; Yang, 2002). Clearly, adding supersets to the language domain makes 

the problem even harder. For learners that do not change their hypothesis unless the 

current input contradicts it, hypothesizing a superset of the target would cause the 

learner to fail. The current research is to develop learners that can successfully learn 

in an environment containing supersets of the target language.1 The learners being 

developed are constrained such that they are allowed only two parses per input 

sentence. The motivation for this is to develop learners that embody 

psycholinguistically viable constraints. The models under investigation will be 

endowed with memory for past grammars (Fodor and Sakas, 2005). A comparison 

study was also done which compares our partial ordering learners against traditional 

total ordering learners. In addition, we investigate how the shape of the language 

domain affects learner performance. 

                                                 
1 Throughout I will freely interchange the terms language and grammar. Based on context I intend 
either the sentences generated by a grammar, or the grammar itself.  
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1.1 Formal Learning Theory in the Gold Paradigm 

 

The Gold paradigm was designed to enable the investigation of language learning 

(Gold, 1967). Gold’s paradigm has had a great influence on research in the area of 

language learnability and computational linguistics. The main result of his research 

was a proof that all the classes of languages in the Chomsky hierarchy except the 

class of finite languages are not learnable from a positive presentation of data. Most 

developmental psychologists believe that children learn language by getting only 

positive instances of data so this is a very important result. However, further research 

(Angluin, 1980) has proved that there are other classes of languages that are learnable 

from positive data. This first section will describe “identification in the limit” which 

is Gold’s definition of learnability. The second section will describe “telltale” sets. 

Telltale sets are used to identify a target language that is generating the positive 

presentation of data; if all languages in a class of languages contain a telltale set, then 

that class is learnable from positive data.  

 

1.1.1 Identification In The Limit 
 

 

Learners in the Gold paradigm receive infinite sets of input strings and make a 

hypothesis about the target language after each individual input. A language is 

considered learnable in the Gold paradigm if it can be “identified in the limit”. 

Identification in the limit means that after a finite amount of time the learner will 
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always guess the same language and that language will be the target language. 

Identification in the limit is a realistic definition of learnability because presumably 

children do not in fact know for sure when, during the course of learning, they have 

hypothesized the correct (target) language.  

 

In the Gold paradigm classes are considered learnable with respect to a given 

information presentation (text or informant). An information presentation method is 

the way in which a learner receives training data. A text is defined as an infinite set of 

strings taken from the target language and only from the target language. No other 

strings can appear in a text. All strings of the target language are guaranteed to appear 

at least once in a text. An informant is defined as an infinite set of pairs of data. Each 

pair consists of a string and a binary value saying if that string is a member of the 

target language. Gold breaks down the text and informant types further into subtypes 

and the results are all the same with one exception (Gold, 1967).2 The text and 

informant methods of information presentation can be compared to the ways a child 

may receive data. If the child is only being given strings of the target language then 

she is being exposed to a text. If the child is being given corrective information about 

strings not in the target language, in addition to strings from the target language then 

she is being exposed to an informant.  

 

Gold defined a guessing rule called identification by enumeration that the learner 

should use to hypothesize languages. Identification by enumeration proceeds as 

follows: (1) Enumerate the class of languages in any way such that they all appear at 
                                                 
2 Anomalous text. 
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least once. (2) After each input sentence guess the unknown language to be the first 

language of the enumeration that agrees with the information received so far. It is 

important to point out that there are enumerations that will not work with a text 

information presentation for certain classes of languages. For instance, a class of 

languages that contains subset/superset languages will not be learnable with an 

enumeration that puts the supersets first. The learner will search the enumeration for 

the first language that is consistent with the input data so far and that language could 

be a superset of the target. Since the Gold learner is error-driven it will not change its 

current hypothesis unless it is necessary. If the learner is hypothesizing a superset of 

the target then it will never be necessary to change the hypothesis because all 

sentences in the subset language are also members of the superset language. If the 

information presentation were changed from a text to an informant though it would be 

possible to learn from the problematic enumeration because the informant contains 

negative information that allows it to move from the superset hypothesis. 

 

Gold proved that any class of languages that contains all the finite languages over a 

vocabulary plus one infinite language that contains those finite languages is not 

learnable from a text presentation. This means that all the classes in the Chomsky 

hierarchy except the class of finite languages are not learnable from text alone. Gold 

believes that the ramifications of this with regards to child learning would be that 

either (1) The class of possible natural languages is much smaller than expected or (2) 

the learner receives negative information in a way we do not recognize or (3) there 
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are constraints on the way positive data are presented to the learner such as the order 

of presentation (Gold, 1967, p 453). 

 

Finite classes of languages have been shown to be learnable using identification by 

enumeration under the criterion of identification in the limit (Bertolo, 2001). The 

enumeration of grammars must have the property that if k>j then either L(Gk) = L(Gj) 

or there is at least one sentence in L(Gk) that is not in L(Gj). This property of the 

enumeration is important because it will force the learner to eventually hypothesize 

the target language. Information presentation by text guarantees that every sentence 

will show up at least once so we are guaranteed that the sentences the learner needs to 

move it through the enumeration will appear. This property also guarantees that all 

subset languages will appear before their respective superset languages so the learner 

cannot hypothesize a superset of the target. By definition, the number of languages 

definable within the principles and parameters framework (Chomsky, 1981; 

Chomsky, 1986) is finite so they are in fact learnable in the limit using identification 

by enumeration (assuming the enumeration has the property just described above). 

Depending on the number of parameters, though, it may take an intractable amount of 

time to converge on the target language. Learning in the principles and parameters 

framework is theoretically possible but not necessarily feasible. 

 

1.1.2 Telltale Sets 
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Research has been done which shows that there are certain conditions that when met 

allow a learner to learn nonempty recursive formal languages from positive data (i.e., 

text presentation)(Angluin, 1980). Angluin has done research that considers inductive 

inference of formal languages from positive data in the Gold paradigm (Angluin, 

1980). Gold proved no class of languages in the Chomsky hierarchy is learnable from 

only positive data. Angluin describes classes of recursive languages that are in fact 

learnable from positive data, however they do not fit neatly as subclasses in the 

Chomsky hierarchy. The main characteristic of these classes of languages is that 

every language has a “telltale” set. A telltale set is a finite subset T of a language L 

such that no other language of the class that contains T is a proper subset of L. If all 

of the sentences of a telltale set T of L appear in the input stream then the learner can 

safely hypothesize L and be guaranteed of not commiting a superset error. The 

existence of telltale sets for each language guarantees that a given class of recursive 

languages can be learned from positive data.3 

 

Sakas and Fodor make use of the idea of a telltale set with their subset-free trigger 

(Fodor and Sakas, 2005). A subset-free trigger is simply a telltale set with only one 

item. In the Fodor & Sakas paradigm, there is no enumeration, so subset-free triggers 

serve as a mechanism to avoid superset hypotheses. In order for a domain of 

languages to be learnable using an incremental learner4, without an enumeration, all 

                                                 
3 More specifically, an indexed family of nonempty recursive languages is inferable from positive data 
if and only if each language of the given class has a telltale set. An indexed family of nonempty 
recursive languages is an infinite sequence of nonempty languages such that there is an effective 
procedure to compute the membership function for each of the languages of the sequence (Angluin, 
1980, p 119-121). 
4 Incremental learning means no memory for past inputs or past grammar hypotheses. 
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of the languages in the domain must have a subset-free trigger. If they don’t then the 

learner runs the risk of chronic undergeneralization if the target language is indeed a 

superset and doesn’t contain a subset-free trigger. This would happen because no 

input string would exist that would force (trigger) the learner to hypothesize the 

superset. 
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1.2 Computational Models of Syntactic Parameter Setting 

 

Syntactic parameter setting models are based on concepts taken from the principles 

and parameters framework (Chomsky, 1981). The principles and parameters 

framework is made up of two main components: Universal Grammar (UG) and 

Parameters. The UG component consists of the principles that are common to all 

grammars (Chomsky, 1957). An example of a universal principle would be that every 

sentence must have a subject. The parameters component is made of all the 

grammatical features that can vary. An example of this would be the null subject 

parameter. If this parameter is set (on) then the resulting grammar is not required to 

have an overt subject (e.g., Spanish). If it is not set (off) then the resulting grammar is 

required to have an overt subject (e.g., English). The starting state for each parameter 

should not be presupposed to be off. For each grammar there is a unique set of 

parameter values that identifies it. Learners in the principles and parameters 

framework are required to find the values for each parameter that will identify the 

target language. Once the parameters are set correctly then learning is complete. 

Chomsky developed the principles and parameters framework in part because it 

appeared to have an advantage over rule-based, transformational paradigms. It was 

envisioned that the amount of information that a learner would need to acquire 

intuitively seems small (linear with the number of parameters) in comparison with the 

amount of information that would be required to establish the correct rules and 

transformations from scratch. Some models deduce parameters values while others 

use probabilistic methods. All classes of languages in the principles and parameters 
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framework are guaranteed to be Gold-learnable because they all have a finite size. 

The rest of this section will describe some of the most important learners in the 

principles and parameters framework. 

 

1.2.1 Triggers 

 

1.2.1.1 Triggering Learning Algorithm 

 

The first learner to be based on triggering was developed by Gibson and Wexler 

(Gibson and Wexler, 1994). They describe an algorithm which uses triggers to set 

parameter values within the principles and parameters framework. A trigger is a 

sentence which determines that a parameter must be set to a certain value in order for 

that sentence to be analyzed correctly or at all. The algorithm described is called the 

Triggering Learning Algorithm (TLA). The TLA proceeds as follows: Get an input 

sentence S. If it is recognized by the current hypothesis then move on to the next 

input sentence. Otherwise, uniformly select a parameter P and change its value. Call 

this new grammar G2. Now analyze S again using G2. If it is successful then G2 

becomes the new hypothesis. Otherwise, keep the original value of the parameter 

which amounts to keeping G as the hypothesis. The TLA follows the error-driven, 

Greediness and Single Value Constraints (SVC) (Clark, 1992). The error-driven 

constraint says that the learner should only change its current hypothesis when it 
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cannot parse the current input sentence. The Greediness constraint means that the 

learner will only adopt a new hypothesis if the new hypothesis can analyze the current 

input sentence and the current hypothesis cannot. Finally, the Single Value Constraint 

says that at most one parameter may be changed per input sentence. 

 

Triggers are divided into two types: local and global. A global trigger for a parameter 

value v of a single parameter Pi is a sentence from the target language such that the 

sentence can only be analyzed only if Pi is set to v. The values of the other parameters 

do not matter. A local trigger for a parameter value v of a single parameter Pi is a 

sentence from the target language such that the sentence can be analyzed only if Pi is 

set to v given a set of values for all other parameters. In contrast to global triggers, 

local triggers depend on the values of the other parameters. 

 

Whether or not the TLA can converge on the target language in the limit depends on 

the existence of at least one local or global trigger for each incorrectly set parameter. 

It has been shown by Gibson and Wexler that at least one linguistically plausible 

parameter space exists for which there are no local triggers and therefore no way of 

reaching the target grammar.5 They give two solutions to this problem. The first 

solution is to make the default initial grammar one such that a local maximum cannot 

be reached from it. The second solution is to initially delay the learner from setting 

parameters that can lead to a local maximum. They conclude that the existence of 

these solutions means that triggering theory may still be essentially correct (Gibson 

and Wexler, 1994, p 410). Gibson and Wexler prove that the TLA can converge but 
                                                 
5 Learner is in local maxima. 
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not that it will necessarily converge. (Berwick and Niyogi, 1996) show that the TLA 

is not guaranteed to converge even if local triggers do exist for all languages. 

 

It is important to note that the TLA is not guaranteed to learn languages that are 

subsets of other languages. Gibson and Wexler mention the existence of subset 

parameters, parameters whose different values result in subsets of one another. Since 

the TLA is error driven there can be no triggers for the subset value of a subset 

parameter if the learner has adopted the superset value. Due to this fact Gibson and 

Wexler restrict their discussion of triggers to language domains in which there are no 

subset-superset relations.  

 

The TLA is important because it gave an algorithm for acquisition of grammars that 

are defined by a finite number of parameters. It has been the springboard for a great 

deal of research in computational modeling of parameter setting, (e.g., Berwick and 

Niyogi, 1996; Briscoe, 2000; Sakas, 2000a; among others). 

 

1.2.1.2 The Deterministic Structural Triggers Learner  

 

A major downfall of the TLA is that its version of triggering is nondeterministic. 

Given a current hypothesis and a trigger, all parameters are available for updating 

regardless of whether or not they will cause the current input sentence to be 

analyzable. Triggers in the TLA are ambiguous from the learner’s perspective 

because the learner does not know which parameter value(s) need to be set in order to 
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accept the current input sentence.6 In contrast, Fodor developed a deterministic 

learning device, the Structural Triggers Learner (STL) (Fodor, 1998b; Sakas and 

Fodor, 2001). The STL differs from the TLA in two important ways: (1) it detects and 

discards any input that is ambiguous as opposed to the TLA which uses it and (2) it 

only changes its grammar (i.e., adopts different parameter values) when it receives 

unambiguous input. The main 'rule' of the STL is “Do not learn from ambiguous 

input”. The TLA on the other hand does not discriminate between parametrically 

ambiguous and unambiguous input. When the TLA receives an input that cannot be 

parsed by the current grammar it chooses a new parameter at random and changes the 

value. If the new parameter setting enables the grammar to parse the input the change 

is accepted. Otherwise, the parameter is retained at its current value. The problem 

here is that there may be more than one parameter change that would allow the input 

sentence to be parsed, the input is ambiguous. Setting a parameter on the basis of 

ambiguous input creates the possibility of setting the parameter incorrectly. If a 

parameter gets set incorrectly the TLA will either waste time resetting the parameter 

to the correct value or, even worse, get stuck in a local maxima and never attain the 

target language. The STL avoids this problem by using unambiguous triggers to drive 

the parameter setting process. 

 

The STL is based on the idea that the parser should be used to identify triggers. Sakas 

and Fodor (2001) describe two main problems that need to be solved for triggering to 

work properly: 

 
                                                 
6 TLA could set more than 1 parameter value if Single Value Constraint were removed. 
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1. The parsing paradox (Valian, 1990; Sakas and Fodor, 2001). The sentence 

processing mechanism can only parse those sentences licensed by the current 

grammar. Sentences that are not licensed by the current grammar contain information 

the learner needs to update the current grammar. The learner will never get the update 

information and as a result will never update the current grammar since the sentence 

processing mechanism cannot process the sentences it needs to extract information 

for the learner.  

2. Parametric ambiguity. What parameters should a learner set for a sentence that is 

licensed by conflicting parameter values?7 

 

The TLA is able to solve the parsing paradox by testing alternative grammars. 

However, it does not escape the problem of parametric ambiguity because it only tries 

one alternative per input sentence. When ambiguity is high the chance of adopting the 

wrong grammar increases. If the wrong grammar were chosen then the TLA would 

need a substantial number of sentences before encountering enough triggers that 

would allow the TLA to recover from this error. There is also the chance that it may 

never recover due to the presence of local maxima. Even if there were no local 

maxima in the domain, since the TLA is non-deterministic the randomly chosen 

parameter may very well create a candidate grammar that does not license the input 

sentence hence wasting a potentially informative input sentence. Due to greediness 

the learner will not adopt that grammar and the input sentence will have been wasted. 

                                                 
7 Note that this is specifically a definition of parametric ambiguity. Another definition of ambiguity is 
when a sentence is parsable by multiple grammars. I.e., it is in more that one language. See Sakas & 
Fodor (2001) for discussion. 
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These conditions create a heavy workload for the TLA even for a small number of 

parameters. 

 

The parametric principle (Sakas and Fodor (2001) following Chomsky (1981)) says 

that the value of each parameter should be established independently of the values of 

all others. The benefit of this is that for n parameters a learner only needs n pieces of 

information to find the target grammar. So the workload is linear with respect to the 

number of parameters. For this learning scheme to succeed, when a parameter is set 

there must be no doubt as to whether or not it has been set correctly. The TLA cannot 

guarantee that when it sets a parameter that it is in fact correct. The only time the 

TLA knows that any given parameter is set correctly is when it has attained the target 

grammar. The TLA always has a search space of 2n grammars.8 A learner that abides 

by the parametric principle would set each parameter once and that setting would be 

correct, effectively halving the search space with each parameter that is set, with the 

potential of dramatically increasing the speed of learning. 

 

The original STL versions (Fodor, 1998b; Sakas and Fodor, 2001) solve both the 

parsing paradox and parametric ambiguity problems and also abide by the parametric 

principle. The STL uses the concept of structural triggers as a basis for learning. 

Structural triggers are small pieces of trees called treelets that are used both as a 

trigger and a parameter value. Treelets are presumed to be provided by the innate 

Univeral Grammar. Each treelet corresponds to a characteristic of a grammar. For 

                                                 
8 But see Sakas (2000a) who demonstrates that under certain specific 'smoothness' conditions the TLA 
performs reasonably well despite the exponential search space. 
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example, there is a treelet that represents the complement-final value of the word 

order parameter for a verb phrase. If a grammar contained this treelet it would be 

complement-final for verb phrases. A grammar is just a combination of treelets 

(together with universal principles). The Supergrammar is all possible treelets (and 

universal principles). 

 

One algorithm that makes use of structural triggers operates as follows, 

Strong-STL Algorithm: 

(1) Parse the current input with the current grammar. 

(2) If the parse is successful then keep the current grammar and goto (1). 

(3) Parse the current input with the supergrammar. 

(4) If there is only one parse then adopt into the current grammar those 

treelets in the parse tree (drawn from the supergrammar) that are not in the 

current grammar and goto (1). 

(5) If there is more than one parse adopt those treelets that show up in all of 

the supergrammar parses and goto (1). 

(6) If there is more than one parse and there are no common tree fragments in 

the supergrammar parses then the input is fully ambiguous parametrically 

so retain the current grammar and goto (1). 

 

The STL will never adopt a parameter value from an input if the input is ambiguous 

with respect to that parameter. In general, language domains with larger amounts of 

parametrically ambiguous sentences are harder to learn than language domains 
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containing smaller amounts of parametrically ambiguous sentences (see Sakas and 

Fodor (2001) for a detailed analysis of how parametric ambiguity affects learner 

efficiency). Information may be lost by dropping sentences but it is necessary to 

ensure error-free learning. The STL solves the parsing paradox by use of the 

"supergrammar" to parse any sentences not licensed by the current grammar. In this 

way it is guaranteed to always be able to parse a sentence even if it is not licensed by 

the current grammar. The STL follows the parametric principle because each treelet 

serves as a parameter value and that parameter value is adopted independently of the 

others. It will also only be set once as opposed to the TLA where it could be set many 

times. 

 

For the STL, triggers are more than the left to right words that make up the input 

sentence; triggers are fragments of a tree structure. These fragments are considered 

to be innate and part of the Universal Grammar (UG). The Strong-STL is an "ideal" 

learner rather than a psychological model. It is useful as a standard against which to 

compare other models. However, Fodor and Sakas have been consistent in viewing 

the potentially massive parallel parsing that is required by the Strong-STL as 

psychologically implausible. The Strong-STL is an ideal learner in that it only sets 

parameter values if it knows those values are correct. Another STL variant called the 

Waiting-STL is also ideal in this respect. The Waiting-STL is the same as the Strong-

STL except that it will adopt treelets only on the basis of sentences that have a single 

parse; i.e. fully unambiguous sentences. Whenever the Waiting-STL parser 

encounters a choice point during parsing, it notes that there is more than one possible 
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parse and chooses a path to complete the parse. This type of parsing is called a 

flagged serial parsing (Inoue and Fodor, 1995). Any sentence that results in a flagged 

parse will not be used to update the current hypothesis. In contrast, as noted above, 

the Strong-STL will compile every possible parse of the current input sentence and 

search those parses for treelets that appear in each one. Any treelets that appear in all 

parses are safe to adopt into the hypothesis grammar. An unambiguous trigger (either 

a sentence with treelet(s) appearing in all parses or a sentence with only one parse) 

paves the way for the creation of a deterministic learning algorithm.  

 

In theory, both the Strong-STL and the Waiting-STL make it possible to conduct 

error-free learning in a reasonable amount of time for a parameter space large enough 

to describe natural languages. However, as I discuss below, large amounts of 

ambiguity in the language domain probably make these STL versions infeasible as 

models of human language acquisition. A variant of the STL called the Guessing-

STL, which has a probabilistic component, works better in practice (Sakas and 

Nishimoto, 2002; Fodor and Sakas, 2004; Fodor and Teller, 2000). 

 

1.2.2 Stochastic Methods 

 

Stochastic methods use probabilistic algorithms to drive learning. Two important 

stochastic methods are Clark’s Genetic Algorithm model (Clark, 1992) and Yang’s 

Naïve Parameter Learner (Yang, 2002). The main advantage of stochastic methods is 

that they are able to perform hill-climbing searches with the benefit of being able to 
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escape from local maxima. In addition, there is no need to apply the subset principle 

to these models because they are not susceptible to the subset problem in the first 

place. It is important to have an understanding of these models because they show 

alternative methods for creating learners that can deal with the subset problem. 

  

 

1.2.2.2 Genetic Algorithm Learner 

 

Clark created the first statistical approach to parameter setting in the principles and 

parameters framework (Clark, 1992). Clark’s learner uses a genetic algorithm (GA) to 

move through the search space. The learner starts by generating a population of 

hypothesis strings at random. Each hypothesis string is made of 0’s and 1’s that 

correspond to the values of each parameter. Next, each hypothesis string is compiled 

into a parsing device that represents that hypothesis string. This parsing device is an 

implementation of the parameter settings in the hypothesis string. An input sentence 

is now read in from the environment and parsed by each of the parsing devices. The 

parsing data is used as input to a fitness metric that determines how “good” the 

hypothesis is at parsing the input sentence. The fitness metric takes into account 

grammatical violations in the parse, subset relations, and general elegance of the 

parse. The subset and elegance factors are weighted such that they will not affect the 

computation as much as grammatical violations will. The genetic operators are now 

applied. A crossover operation is done on two hypotheses selected at random from the 

hypothesis strings. The random selection is weighted according to the fitness of the 
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hypotheses. More fit hypotheses are more likely to be selected for crossover than less 

fit hypotheses. A crossover is done by taking the first half of the parameters from one 

of the hypotheses and combining it with the parameters from the second half of the 

other hypothesis. The second half of the first hypothesis is also combined with the 

first half of the second hypothesis. For example, suppose the domain has four 

parameters and the two hypothesis strings are 1111 and 0000. The crossover 

operation for these strings would result in the hypothesis strings 1100 and 0011. The 

two new hypothesis strings are now added to the population. The learner now 

performs a mutation operation. A mutation operation is performed by selecting a 

hypothesis string at random from the population (according to fitness) and flipping 

one of its parameter values. For example, a mutation operation on the string 1111 

could result in the string 1101. The final genetic operation is to eliminate 

hypothesis(es) from the population. Hypothesis(es) are chosen at random according to 

their fitness and removed from the population of hypothesis strings. The least fit 

hypothesis(es) are more likely to be eliminated than the most fit. The cross-over and 

mutation operations occur for each input sentence while the elimination of 

hypothesis(es) is only done occasionally. If the population consists of a single 

hypothesis string that matches the target then learning is done. Otherwise, start the 

process over by recompiling the population hypothesis strings into parsing devices. 

 

The GA learner is not susceptible to the superset problem like error-driven learners 

are. The fitness metric will tend toward favoring hypotheses that generate smaller 

languages, just as the Subset Principle says to do. Supersets of the target may be kept 
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as part of the population for a while but they will eventually be deemed unfit and 

removed. In contrast to the GA learner, error-driven learners must never hypothesize 

a superset of the target because they have no way of updating the current hypothesis 

if it succeeds in parsing the current input sentence. For the GA learner, target 

languages that are supersets of other languages might seem like a problem because of 

the GA learner’s tendency toward favoring smaller languages but they are not. If the 

target language happens to be a superset of some other language it will eventually be 

attained because the grammatical violations piece of the fitness metric will dominate 

the superset piece causing the GA learner to give up the smaller language. This 

domination will allow the superset hypothesis strings to prosper and eventually 

converge on the target. 

 

1.2.2.2 Naïve Parameter Learner 

 

Yang created a stochastic learner called the Naïve Parameter Learner (NPL) (Yang, 

2002). The main idea of the NPL is that it rewards grammars that perform well and 

punishes grammars that perform poorly. Repeated applications of reward and 

punishment should ultimately guide the learner to the target grammar. 

 

The NPL maintains a set of weights each of which corresponds to one parameter. The 

NPL starts by choosing a hypothesis grammar at random. The new grammar is 

created by randomly selecting values for each parameter according to their individual 

weights. All weights are initialized to 0.5. An input sentence is read in and tested 
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against the current hypothesis grammar. If the current hypothesis can parse the input 

then the learner rewards all the parameter values in the current hypothesis. Otherwise, 

it punishes all the parameter values in the current hypothesis. Rewarding a parameter 

means updating its weight such that it moves closer to its marked state. Punishing a 

parameter means updating its weight such that it moves closer to its unmarked state. 

Learning continues until all parameter weights are within a given threshold of either 

the marked or unmarked values. For example, if the threshold value is .001 then 

learning will continue until all parameter values are either less than .001 or greater 

than .999. The amount to punish or reward parameter weights can be changed so as to 

speed up or slow down movement through the search space. A large increment will 

allow for bigger jumps in the search space. This opens up the possibility of 

converging quickly on the target but it also makes the learner susceptible to 

oscillating parameter values that would hinder convergence. A small increment 

moves more slowly through the search space but it should always be moving steadily 

toward the target grammar. 

 

The NPL does not employ the subset principle as part of its logic. It relies on the 

probabilistic nature of the algorithm to avoid superset hypotheses. If a situation arises 

where the superset value is set and it keeps getting rewarded then the learner will 

move towards the superset hypothesis. The NPL learner is susceptible to superset 

errors due to the fact that learning stops by threshold. If the set of parameter weights 

represent a superset hypothesis then all input sentences will reward those parameter 

values. As the parameter weights get closer to thresholds representing superset values 



 23

there is less of a chance that a non-superset grammar will be chosen at random. For 

the learner to escape from a potential superset error it would need to randomly select 

a grammar that is not the superset grammar and have that grammar fail to parse the 

current input sentence. As a result, the parameter weights will get punished and their 

values would move away from the superset hypothesis. The learner could still have its 

parameter weights move away from a superset hypothesis but the chances of that 

happening become smaller the closer the parameter weights are to a superset 

grammar. The time it would take to recover would depend on the increment of 

reward/punishment being used. A very small increment could essentially stop the 

learner from escaping the superset hypothesis. A large increment would allow the 

learner to escape much more easily. If the parameter weights become very close to a 

superset hypothesis then random grammar selection will settle on the superset 

hypothesis most of the time. The weights need to move from the superset hypothesis 

parameter values in order to increase the chance of generating hypotheses other than 

that particular superset hypothesis. A smaller increment requires more successive 

punishments of parameter weights that are close to the superset hypothesis as 

compared to a larger increment. A small increment value only changes the parameter 

weights a little each time so more punishments are needed to create a significant 

change. For the parameter weights to move from the superset hypothesis the 

parameter values need to be chosen that are different from the superset hypothesis. 

The likelihood of randomly choosing parameter values that do not make up the 

superset hypothesis is very low when the weights are close to those of the superset 

hypothesis.  
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1.2.2.3 Guessing STL 

 

The Guessing-STL is a probabilistic learner that is a variant of the original STL 

(Sakas and Fodor, 2000; Sakas and Nishimoto, 2002; Fodor and Sakas, 2004). The 

Guessing-STLs work by choosing a parse when ambiguous input is encountered. This 

is in contrast to the Strong-STL and the Waiting-STL deterministic variants that 

discard the input if it is ambiguous.9 The Guessing-STLs vary from each other by the 

strategy they use to choose a parse. The Any Parse strategy tells the learner to choose 

a parse at random. The Minimal Connections strategy chooses the parameter value 

that results in the smallest parse tree. The Least Null Terminals strategy selects the 

parse with the fewest empty categories. The Nearest Grammar10 strategy chooses the 

grammar that differs least from the current hypothesis. Other guessing strategies 

could be implemented. The performance of the Guessing-STLs turned out to be better 

than the performance of the deterministic STL versions (see discussion below in 

Model Comparisons).  

 

1.2.2.4 Probabilistic Components of the TLA 

 

                                                 
9 Waiting-STL discards ambiguous input immediately while Strong-STL will try and find common 
treelets among parses and then discard if none are found. See section 1.2.1.2 for description of 
Waiting-STL and Strong-STL. 
10 Nearest Grammar is called Strong Oracle in Sakas and Nishimoto (2002). 



 25

Gibson and Wexler’s Triggering Learning Algorithm also has a probabilistic 

component but it does not reap the rewards. In the TLA, the learner chooses a 

parameter at random when the current grammar hypothesis fails to parse the current 

input sentence. This randomness is not enough to help the TLA escape local maxima 

though. The randomness in the TLA is only encountered when the input sentence 

cannot be parsed by the current hypothesis grammar. If the TLA hypothesizes a 

superset of the target it will never recover because it is error driven and it will never 

change its hypothesis. The randomness in the TLA is subservient to the error driven 

nature of the learner. In each of Clark’s and Yang’s learners the probabilistic pieces 

are more prominent.  

 

1.2.3 Feasibility 

 

Much research has been devoted to the learnability of models (Gold, 1967; Angluin, 

1980). Learnability is concerned with which language domains logically can and 

cannot be learned using a given learning model. The problem of feasibility has not 

been tackled until recently, however. Feasibility deals with how long it will take to 

learn languages in a domain as opposed to if the domain can be learned at all. It is 

important to know if something can be computed but it is also relevant to know how 

long it will take given that it can be computed. Methods of determining algorithm 

feasibility are useful in determining whether or not those algorithms are viable as a 

model of human acquisition. There would be no point in constructing models of 

human acquisition that are intractable. Methods of determining algorithm feasibility 
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are also useful as a means of comparison between algorithms as well as a way to 

uncover unforeseen problems with regards to local maxima (e.g., Niyogi and 

Berwick, 1996). 

 

1.2.3.1 Learning From Triggers 

 

Berwick and Niyogi (1996)11 show that it is possible to model any memoryless 

learner as a Markov chain. In addition, they apply this technique to Gibson and 

Wexler’s Triggering Learning Algorithm (TLA) (Gibson and Wexler, 1994). They 

describe more initial-final grammar pairs for which the TLA learner does not 

converge on the target and also describe flaws in the way Gibson and Wexler define a 

“problem state”. Sakas (2000a; 2001) also applies Markov techniques to analyze the 

TLA as well as Fodor’s (1998b) STL model. See discussion below. 

  

Modeling the behavior of the TLA as a Markov chain makes it possible to estimate 

the average number of sentences required to learn a target language.12 Berwick & 

Niyogi (1996) set up the Markov chain as follows:  

 

Each grammar state represents a node. There is a link from one grammar (A) to 

another grammar (B) if (1) the hamming distance of the parameter settings is 1 and 

                                                 
11 Berwick and Niyogi (1996) and Niyogi and Berwick (1996) contain much overlapping material. 
Since it is the overlapping material that is relevant to my dissertation, I will take the liberty to cite 
either of them. 
12 Sakas (2000a, p 30) gives a detailed description of how to perform the calculations for the average 
number of inputs required to learn a target language using a Markov chain. 
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(2) there is an input sentence that is a member of B that is not a member of A. 

Absorbing states are nodes with no outgoing links. These are either the target state or 

one of the local maxima (if any). All outgoing links have a transition probability 

associated with them. The sum of all outgoing links of a node must be 1. 

 

Gibson and Wexler define a “problem state” as a grammar from which there is no 

path to the target grammar. A learner hypothesizing this state is destined to fail with 

probability equal to 1. Berwick and Niyogi show that this definition leaves out 

problematic grammars from which a learner may get to the target grammar, but from 

which a learner may not (with a probability less than 1). Berwick and Niyogi define a 

“problem state” as a grammar which is connected to a non-target absorbing state (or 

local maxima). They show that the probability of reaching these local maxima is 

significant and therefore that the Gibson and Wexler definition is flawed. So out of 

the 56 initial-final grammar pairs, Berwick and Niyogi calculate 12 that are not 

learnable with a probability of 1 as opposed to the 6 that Gibson and Wexler 

calculate. 

 

Berwick and Niyogi also mention that the Gibson and Wexler maturational solution 

to the local maxima problem is not correct. They say that there is a significant 

probability that a local maximum could be reached even if the learner avoids early 

setting of a parameter that leads to a local maximum. G & W’s maturational solution 

is based on the assumption that all strictly absorbing states are avoided by waiting for 

a finite period of time. Unfortunately, other absorbing states exist which can be 
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reached with a probability greater than 0. The existence of these other absorbing 

states means that G & W’s maturational solution is not guaranteed to work in all 

cases.  

 

Finally, they also show that the TLA’s two heuristics (SVC and Greediness) slow 

learning down when combined. When one or the other heuristic is removed, the TLA 

surprisingly converges faster (cf., Sakas, 2003). This is significant because with either 

one of the two heuristics removed, all local maxima disappear. 

 

1.2.3.2 Ambiguity and the Computational Feasibility of Syntax 
Acquisition 
 

Following Niyogi and Berwick, Sakas (2000a) created a slightly different 

computational framework for analyzing the feasibility of parameter setting models of 

language acquisition. The performance of the TLA and the STL13 were analyzed 

using this framework. 

 

The computational framework is set up similarly to the one created by Niyogi and 

Berwick (1996). One difference in the frameworks, though, is the definition of a state 

when setting up the Markov structure. Niyogi and Berwick assign one grammar per 

state. The current formulation partitions all the grammars according to hamming 

distance from the target grammar and then assigns one partition per state. These 

partitions are called G-Rings. Sakas assumed that all grammars in a G-Ring have an 

                                                 
13 Waiting-STL variant. 
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equal probability of parsing an input sentence (Weak Smoothness Requirement). Arcs 

represent the probability of moving from one G-Ring to another. Sakas defined a 

function that gives the probability of moving from one G-Ring to another. This 

function takes into account various factors such as ambiguity and parameter 

expression rate. Ambiguity is the number of grammars that can parse a given 

sentence. Parameter expression rate is the average number of parameters expressed by 

sentences of a given language. By varying these function parameters different 

learning environments can be simulated. A Markov structure is created from this state 

space graph. This Markov structure is used to calculate an estimate of the number of 

sentences required to learn a target language (Sakas, 2000a). 

 

The analysis of the TLA shows that it performs best when the ambiguity is distributed 

according to a smooth domain. A smooth domain is one in which more similar 

grammars generate more similar languages. Sakas’ Strong Smoothness requirement 

says that the domain should be weakly smooth (see above) and that the probability of 

a successful parse is greater for G-Rings closer to the target than for those G-Rings 

further away. In all other situations the feasibility of TLA performance is 

unreasonable, so much so that it is worse than a learner that chooses grammars 

completely at random.  

 

Sakas (2000a) also performed an analysis of the STL. The STL seems to perform best 

in a realistic natural language domain when the parameter expression rate varies for 

each sentence. The STL performs well when the expression rate is fixed and low but 
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this does not simulate a realistic learning situation (cf. Sakas and Fodor, 1998). In 

order to simulate realistic conditions the expression rate must be high which in turn 

presents problems for the STL. These problems result from the fact that the 

deterministic STLs require parametrically unambiguous input to set parameters. 

Having a high parameter expression rate increases the chances that an input sentence 

will be ambiguous and consequently discarded. If the parameter expression rate were 

allowed to vary then it opens up the possibility that a sentence with a low expression 

rate will be encountered and that parameters will be set. The STL abides by the 

parametric principle (set individual parameters; don’t evaluate whole grammars) 

which needs only a linear number of learning events as opposed to an exponential 

number that would be needed if the learner evaluated individual grammars. Once a 

few parameters are set, each subsequent input will be less parametrically ambiguous 

and successful learning events will occur more frequently.  

 

Sakas’ research creates a means of comparing different learning algorithms and 

grammar spaces according to their feasibility. This research is significant because it 

provides a method that can be used to analyze realistically sized natural language 

domains (which is not tractable using Niyogi and Berwick’s model) and is not bound 

by the idiosyncrasies of any particular language. Sakas’ model is more abstract and 

allows for the setting of simulation parameters that can be used to model a wide 

variety of learning environments. Further, it allows analysis of different sources of 

learning difficulty, which is not possible using Niyogi and Berwick’s formulation. 

 



 31

The framework outlined in this research does not take into account domains 

containing languages in subset-superset relationships. Given any two languages in the 

domain a constraint is imposed that guarantees that there is at least one sentence in 

each language that is not in the other. The analysis would become much more 

complex if subsets were allowed. Superset avoidance or recovery mechanisms would 

need to be built into the learning algorithms and the cost of these procedures would 

not be reflected in the feasibility results of the framework as it is currently 

constituted. Learning algorithms exist which are inherently immune to the subset 

problem but there are others that are not. Comparisons of the feasibility of algorithms 

in those two groups are very important but would not be accurate because either (1) 

the learnability of algorithms susceptible to the superset hypothesis might be in 

question or (2) the cost of superset avoidance or recovery might not be reflected in 

the feasibility results. Suppose two algorithms are being compared. One algorithm, 

call it A, is probabilistic and can escape from a superset hypothesis (e.g., NPL). The 

other algorithm, say B, cannot escape from a superset hypothesis (e.g., error-driven 

with random grammar selection). Algorithm B could have better feasibility statistics 

as compared to algorithm A, which on the surface would make it seem like algorithm 

B is better than A. What is missing though is that the learnability of algorithm B 

should be in question. There is no way to tell from the feasibility results that 

algorithm B is susceptible to superset errors. Now suppose that algorithm B was 

altered such that it was able to avoid superset hypotheses. Such a mechanism might 

require work for the learner that is not accounted for in the feasibility calculations. 
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Algorithm B might have better feasibility results but in actuality be slower because of 

the superset avoidance mechanisms that were added but not accounted for. 

 

1.2.3.3 Modeling the Effect of Cross-Language Ambiguity on Human 
Syntax Acquisition 
 

Sakas (2000a; 2000b) presents a computational framework used to model the process 

by which human language learners acquire the syntactic component of their native 

language. The main focus of this model is to analyze the effect that parametric 

ambiguity has on the performance of a learner. Parametric ambiguity occurs when a 

sentence is licensed by more than one language. Parametrically ambiguous sentences 

are troublesome because they force the learner to choose between at least two 

different sets of parameter values, only one of which is correct. If the wrong one is 

chosen learning will be prolonged and in the worst case will not happen at all. The 

Sakas model judges a learner according to its feasibility or the amount of work 

(number of sentences) it takes to converge on the target language. 

 

The number of input sentences consumed is derived by a Markov analysis. A Markov 

chain is set up such that states represent the number of parameters that have been set 

(as opposed to representing grammars, see discussion above) and state transitions 

represent the probability that the learner will set some number (w) of new, currently 

unset, parameters. The expression rate (e) is the average number of parameters 

expressed per sentence. The effective expression rate (e’) is the average number of 

unambiguously expressed parameters per sentence. For an unambiguous domain, 
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Sakas shows that the probability that w new parameters will be adopted is 

hypergeometrically distributed. He folds the effective expression rate, the proportion 

of unambiguously set parameters, to the total number of parameters expressed. The 

use of the number of set/unset parameters together with the effective expression rate 

are the principal mechanisms used for formulating transitional probabilities between 

states. The function that calculates the expected number of input sentences uses the 

transition probabilities. 

 

An example analysis was done on the Structural Triggers Learner (STL). The specific 

STL variant used was called the Waiting STL. The main strategy for the Waiting STL 

is that it should only learn from unambiguous input. Any ambiguous input sentences 

that are encountered are ignored (at least from the perspective of learning). For the 

waiting STL, ambiguity has its largest effect during the early stages of learning. STL 

performance improves dramatically after the early stages are done. More parameters 

are set so there is less ambiguity as learning progresses. Sakas showed that the STL is 

particularly susceptible to ambiguity because it will only learn from sentences that are 

unambiguous. However, results also showed that increasing the total number of 

parameters that need to be set had only a small effect on the amount of work that 

needed to be to be done. This is in strong contrast to the TLA model in which the 

amount of work needed to achieve the target grammar rose exponentially in the 

number of parameters that needed to be set. Subsequent research (summarized in 

Fodor and Sakas, 2004) attempts to keep the benefits of the STL scalability, while 
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speeding up learning by loosening the strict implementation of the Parametric 

Principle (see discussion in the next section).  

 

Sakas also puts forth the idea that this model should be used in conjunction with a 

computational psycholinguistic study and a computer simulation. Comparison of the 

TLA and the STL most probably points to the fact that different models of acquisition 

are affected differently by different distributions and amounts of ambiguity. A 

computational psycholinguistic study should be used to determine the “shape of 

ambiguity” of natural languages, and see if the domain of languages used by the 

computer model of learning match those of the distribution of ambiguity in natural 

language. A computer simulation will empirically test the learner in question to 

establish its feasibility.  

 

It is important to note that the domains used for the simulation of learners in all the 

studies cited above avoided subset-superset languages by removing all such 

relationships prior to the beginning of the simulation run. It is part of my ongoing 

research (with Sakas & Fodor) to investigate to what extent parametric ambiguity is 

relevant to the subset problem. It is an open question how large a cost a learner may 

incur in a domain with subset/superset relationships and how the amount of 

parametrically ambiguous input is related to that cost. Knowledge of the distribution 

of parametrically ambiguous input due to a subset/superset relationship in conjunction 

with the cost of subset/superset specific logic could be valuable information when 

determining the feasibility of a learner that incorporates subset/superset logic. 
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1.2.3.4 Model Comparisons 

 

Research was done that compares different search heuristics used to guide learning in 

the principles and parameters framework (Sakas and Nishimoto, 2002; Sakas, 2003; 

Fodor and Sakas, 2004). The heuristics are judged according to their feasibility (the 

time/effort, measured in terms of number of input sentences required, it takes to attain 

the target grammar). The heuristics used in these studies were partitioned into four 

different basic algorithms and their variants: Error-Driven Blind Guess (EDBG), 

Triggering Learning Algorithm (TLA) (Gibson and Wexler, 1994), the Variational 

Learner (VL)14 (Yang, 2002) and the Structural Triggers Learner (STL) (Fodor, 

1998b; Sakas and Fodor, 2001). The heuristics can further be divided into two main 

categories: those that guide the learner according to a can parse/cannot parse outcome 

and those that guide the learner according to parse tree information. The EDBG, TLA 

and VL exclusively use can parse/cannot parse information while the STL variants 

make use of both.  

 

In Sakas and Nishimoto (2002), results on a small 4 parameter domain, showed 

unsurprisingly, that the STL strategies (Strong-STL, and the Nearest Grammar 

Guessing-STL variants) which availed themselves of a maximum amount of 

structural information which is obtained through a full parallel parse of every input 

                                                 
14 The variational learner is a variant of Yang’s Naïve Parameter Learner (NPL). 
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sentence. The Waiting-STL, which discards all sentences that contain ambiguous 

information, performed the worst of all the STL variants. 

 

The Variational Learner (Yang, 2002), which uses statistics over a can parse/cannot 

parse outcome performed even worse than the STL models. Sakas & Nishimoto note, 

however, that the Variational Learner works well at the outset of learning in a highly 

ambiguous domain. In conclusion, they conjecture that the best approach might be a 

combination of the two main heuristics: Use a statistical heuristic such as the VL in 

the early stages of learning and then switch to a structural heuristic such as the STL 

when statistical learning starts to deteriorate. The STL operates most efficiently after 

some parameters have been set. By using the VL in the beginning and the STL from 

then on, the performance of the learner can be maximized for the duration of the 

simulation. 15 

 

Again, for all of the studies discussed in this section, none of the search heuristics 

directly address the subset problem. Instead, simulations were implemented by 

removing all supersets of the target language prior to the each simulation run. 

Leaving the superset languages in the domain, and studying the performance of 

strategies that actively apply the Subset Principle during the course of learning, is the 

focus of this thesis.  

 

                                                 
15 Fodor (1998a) has a similar model to the Variational Learner, the Parse Naturally STL, which counts 
how often a parameter value was used in a successful parse and picks a grammar based on those 
counts. Though untested by Sakas and Nishimoto, Sakas is optimistic that this model might well 
perform best of all the STL variants (Sakas, pc).  
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1.3 The Subset Principle 

 

The Subset Principle is a rule that learners can follow that would allow them to avoid 

hypothesizing languages that are supersets of the target language. Explicit 

formulation of the Subset Principle is generally credited to Berwick (1985) and 

Manzini and Wexler (1987) and Wexler and Manzini (1987). However, to the best of 

my knowledge, Gold (1967) was the first to mention problems related to learning 

classes of languages, from positive data only (see section 1.1.1 Identification In The 

Limit), and Angluin (1980), among many others, continues investigation in Gold’s 

paradigm in which the problem of “overgeneralization” remains a central concern. 

While the Subset Principle is generally accepted and deemed relevant by a large 

segment of the research community, there are those who believe that subset languages 

do not exist in the domain of natural (human) languages, and that the Subset Principle 

is not a necessary aspect of human language learning. This section will start with a 

discussion of the research by Berwick (1985) and Manzini and Wexler (1987) in the 

formulation of the Subset Principle. Next, some research that argues against any need 

for the Subset Principle will be reviewed. Finally, research by Fodor and Sakas 

(2005) will be reviewed. Their article goes into problems that arise up if the Subset 

Principle is faithfully obeyed by a learning algorithm that has psychocomputationally 

plausible restrictions on what (and how much) can be retained in the memory store. 
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1.3.1 Subset Principle Background 

 

1.3.1.1 Berwick 

 

Berwick (1985) states that the Subset Principle is necessary (though not sufficient) for 

identifiability from positive evidence. He states the Subset Principle informally as 

follows: “Briefly, the Subset Principle states that learning hypotheses are ordered in 

such a way that positive examples can disconfirm them.” If the hypotheses were 

ordered in some other way then positive only evidence would not be enough for the 

learner to attain the target grammar. The learner could hypothesize a superset before 

the target and the desired final acquisition of the actual target language would never 

take place. All sentences would be grammatical with respect to the superset language 

and the learner would never change its hypothesis and consequently never converge 

on the target language, hence the need for the Subset Principle. Berwick’s 

formulation of the Subset Principle was based on research done by Gold (1967) and 

Angluin (1980). 

 

Berwick also mentions that the problem of determining whether one language is a 

subset of another language is in the general case undecidable. (Though Joshi (1994) 

has shown that it is decidable over the tree sets of context-free grammars.) This is 

relevant because the learner needs to know when to apply the Subset Principle. If the 
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learner could not determine subset/superset relationships then acquisition cannot be 

guaranteed. Berwick (1985, p 237) concludes that either the ordering of languages 

was determined as humans developed as a species due to natural selection (i.e., it’s 

innate, also see discussion in Fodor & Sakas (2005) section 2) or that the calculations 

are tractable due to constraints on natural languages such as a limited depth of 

recursion.16  

 

1.3.1.2 Manzini and Wexler 

 

Manzini and Wexler argue for the existence of subset languages in the natural 

language domain and the implications of their existence for a language learner 

(Manzini and Wexler, 1987; Wexler and Manzini, 1987). They construct examples 

within binding theory to show that the existence of subset languages is linguistically 

reasonable. The Subset Principle is defined and used as the main component to drive 

learning in a domain that contains subsets.  

 

Manzini and Wexler use Binding Theory to give examples of subset languages. They 

assume that Principles A and B as defined by Chomsky (Chomsky, 1980; Chomsky, 

1981; Chomsky, 1982) hold. It is shown that different values of the governing 

category parameter for anaphors generate languages that are subsets of one another. 

For example, assume that value 1 of the governing category parameter says that the 

                                                 
16 Berwick cites research by Wexler and Culicover (1980) showing that a transformational grammar is 
learnable from input sentences with a maximum of two embedded clauses. 
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governing category for an anaphor a must contain a, a governor for a, and a subject. 

Also, assume that value 2 of the governing category parameter says that the 

governing category for an anaphor a must contain a, a governor for a, and an 

inflection. Given other principles of Government and Binding Theory, it follows that 

all categories with an inflection are categories with a subject, but not all categories 

with a subject are categories with an inflection. So with respect to the distribution of 

anaphors, the languages that have value 1 of the governing category parameter are a 

subset of the languages that have value 2 of the governing category parameter. The 

examples given by Manzini and Wexler contain more values for the governing 

category parameter but the idea is the same. The inclusion hierarchy described for 

anaphors is also shown for pronominals except that the subset/superset relationships 

go in the opposite direction. 

 

The Subset Principle is necessary for learning a parameter value when the languages 

generated by the parameter are in an inclusion hierarchy. If the languages are not in 

an inclusion hierarchy then some other method can be used to select the parameter 

value. M&W define the Subset Condition which states that for any two values pi and 

pj of a parameter p, either the language generated by the value pi is a subset of the 

language pj or vice versa. The values of the other parameters remain fixed. If the 

Subset Condition holds for a parameter then the learner must use the Subset Principle 

to select the value of that parameter. If the Subset Condition does not hold then some 

other method should be used to select the value of that parameter.  
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Manzini and Wexler also define another principle, the Independence Principle. In 

M&W's framework, both the Independence Principle and the Subset Condition must 

hold if the Subset Principle is to be invoked successfully. The Independence Principle 

states that if the language generated by value pi of parameter p is a subset of the 

language generated by value pj of parameter p that relationship will always hold 

regardless of the values of any of the other parameters (as long as the values of the 

other parameters remain fixed when comparing the subset and superset values of p). 

For example, if 011 is a subset of 111 with p1 being a subset parameter then we can 

also say that 001 is a subset of 101. Notice that the values of the other parameters 

remain constant when comparing values of the subset parameter. M & W do not make 

any statements about what happens if other parameters are allowed to vary at the 

same time as the subset parameter (but cf. Fodor and Sakas (2005) definition of 

independence). The Independence Principle is important because it allows the learner 

to use the Subset Principle to set the values of parameters individually.  

 

This research was important because it gave examples of languages that were subsets 

of one another and how a learner could learn in such a domain. Much research has 

been done in response to the ideas put forth. Some research questions the existence of 

such languages (Kapur, Lust, Harbert et al., 1993) while other research supports it 

(Wexler, 1993). The generally prevailing opinion seems to be that some but not all 

natural language parameters create subset-superset relations. It is an open area of 

research to create learners that abide by the subset principle. Major learning models 

have been created since this work in 1987, but the authors only mention the existence 
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of subset languages and then set aside the problem (Gibson and Wexler, 1994; Fodor, 

1998b). The implication of creating a learner that does abide by the Subset Principle 

has been addressed, though, by Fodor and Sakas (2005). 

 

1.3.2 Arguments Against the Subset Principle 

 

1.3.2.1 Becker 

 

Becker (2006) puts forth an argument against using the Subset Principle for learning 

raising and control verbs. The reasons for this are that (1) ambiguous verbs could 

cause the learner to incorrectly set the verb class parameter and that (2) children seem 

to learn in a way that assumes the wrong default parameter value needed for using the 

Subset Principle. It is suggested that a probabilistic approach using cues for raising 

and control verbs is a better learning strategy than the Subset Principle. 

 

The significance of this research is that if it is correct it gives support to the 

probabilistic learning paradigm (e.g., Yang, 2002) over the triggered learning 

paradigm (e.g., Gibson and Wexler, 1994; Fodor and Sakas, 2004). There may be 

ways around it such as along the lines suggested by Gibson & Wexler (1994) for the 

verb second parameter. That is, setting the marked value of the verb class parameter 

may be delayed for a period of time, which would allow the triggered paradigm to 

work. 
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1.3.2.2 MacLaughlin 

 

MacLaughlin (1995) critically examines the need for the Subset Principle in first 

language acquisition as a means of determining its applicability to second language 

acquisition. MacLaughlin concludes that the subset learning problem, which the 

Subset Principle is intended to solve, does not arise in the first place. She argues that 

the Subset Principle does not apply in situations in which it is standardly assumed to 

apply. Basically, her arguments involve reorienting the linguistic descriptions of 

syntactic parameters. For example, the Case Adjacency parameter is related to the 

adjacency of a verb to its object. A side effect of the case adjacency parameter is to 

regulate where adverbs can appear within a verb phrase. A grammar with strict 

adjacency such as English does not allow an adverb to appear between a verb and its 

direct object. French on the other hand does not have strict adjacency and it does 

allow an adverb to appear between a verb and its direct object. A grammar without 

strict adjacency can parse sentences in which verb and object are strictly or not 

strictly adjacent so the Case Adjacency parameter can be thought of as a subset 

parameter. MacLauglin makes the argument that the effects just described would be 

better explained in terms of verb raising. In French, when the verb raises the adverb 

will appear between the verb and its direct object in the surface form. If the verb does 

not raise, such as in English, the adverb will appear to the left of it in the surface 

form. The verb raising puts the English and French grammars in an intersecting 

relationship as opposed to a subset/superset relationship. She also gives similar 
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arguments for the Pro-drop parameter and the Bounding node parameter. 

 

MacLaughlin also brings up several points that she believes to be problems with the 

Parameterized Binding Theory of Manzini and Wexler (1987). These problems are 

similar in spirit to her arguments concerning the Case Adjacency parameter, the Pro-

drop parameter, and the Bounding Node parameter. 

 

1.3.3 Subset Principle Compliance 

 

Fodor and Sakas (2005) discuss how the Subset Principle (SP) could be implemented 

so that it is feasible both linguistically and psychologically. A major point uncovered 

by their research is the fact that incremental learning and SP are incompatible. They 

also discuss incompatibility of the Single Value Constraint and SP. In addition, some 

new learning models that are faithful to SP are presented and problems with those 

models are discussed. 

 

1.3.3.1 The Shifting Problem 

 

Previous research (Clark, 1992) states that SP is not a solution to avoiding superset 

errors because of a 'shifting' problem between parameters. The following language 

domain, as depicted by Fodor & Sakas (2005, p 530) shows an example of Clark's 

original example of shifting problem.  
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Figure 1: Shifting problem. 

 

The problem occurs when the learner hypothesizes 10 and the target is 01 (or vice 

versa). Clark assumes that the learner abides by the Single Value Constraint which 

says that the learner can only change one parameter at a time keeping the other 

parameters fixed. The SVC is psychologically attractive because it models a gradual 

time course. Given SVC, there is no way for the learner to move from 10 to 01. From 

10, the learner can only move to 11, which would cause a superset error assuming the 

target is 01. Fodor and Sakas (2005) argue that the problem is not SP per se, but 

rather Clark’s strict application of the SVC. If the learner were allowed to update two 

parameters at the same time when required to do so by a stronger constraint like SP it 

could move from 10 to 01.  

 

Another issue with moving from 10 to 01 is that the learner must give up a marked 

value (i.e., the first parameter goes from 1 to 0). Fodor and Sakas refer to this as 

retrenchment – for the learner to be safe from a fatal superset hypothesis, the learner 

must always start from 'scratch'. In the case of parameters, this means resetting 
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parameters to their least marked values.17 Using retrenchment and giving up the SVC 

would allow the learner to move from 10 to 01. Learning would proceed as follows: 

The learner starts at 00 and then hypothesizes 10 due to some input. 10 is then 

disconfirmed due to the next input sentence s. Assume also that s is not in the 

language generated by 00. At this point the learner retrenches to the least marked 

grammar that licenses s, which is 01, and learning is complete. In previous research 

SVC is given precedence over SP and that should not necessarily be the case. Fodor 

and Sakas say that if SP is used it should take precedence over all other constraints. 

Obeying SVC is fine as long as it does not affect application of SP.  

 

1.3.2.2 The Simple Defaults Model 

 

Following M&W, Fodor and Sakas describe a learning model called the Simple 

Defaults Model (SDM). The SDM was designed to add a level of prioritization to 

grammar hypotheses so that SP is always obeyed. In the SDM all parameters have a 

default value that is a subset of its marked value. Each parameter does not necessarily 

designate a subset/superset relationship, but if it does, the marked value must be a 

superset of the default or unmarked value. The SDM also requires that the only 

subset/superset relationships that exist in the language domain are exactly those that 

come about from changing an unmarked value of a subset/superset parameter to a 

                                                 
17 Of course this assumes less than perfect information about the correct parameter settings for the 
target language. If the learner were able to determine absolutely that a marked parameter value was 
necessary to parse an input sentence (e.g., Strong-STL), then the learner would not need to retrench to 
the unmarked value of that parameter. So far this strong form of the parametric principle (Sakas and 
Fodor, 2001) has proven elusive under reasonable psychologically plausible computational constraints. 
However, see Sakas & Fodor (in prep.) for re-examination of the issues. 
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marked value. In addition, the default value and the marked value of a parameter must 

never reverse a subset/superset relationship over all combinations of the other 

parameter values, even if they are varying at the same time. This is Fodor and Sakas’s 

variant of M&W's Independence Principle.  

 

1.3.3.3 The Ordered Defaults Model 

 

A variant of the SDM is the Ordered Defaults Model (ODM). The ODM is the same 

as the SDM except that the parameters are ordered in some manner. This ordering is 

necessary (but not sufficient) for a learner to succeed when a language domain does 

not respect the Independence Principle. In this case, the SDM would be susceptible to 

superset errors while the ODM would not be susceptible due to the ordering of 

parameters. The following language domain, as depicted by Fodor & Sakas (2005, p 

526) is an example of a language domain that is learnable by the ODM but not the 

SDM.  

 

 

Figure 2: Example language domain learnable with ODM but not SDM. 
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The learner begins at grammar 00 and the target is grammar 10. The SDM would be 

susceptible to superset errors in this language domain because it does not have access 

to the knowledge that 01 is a superset of 10. From 00, and on receiving input t, the 

SDM could set the marked value of parameter p2 and cause the learner to hypothesize 

01. This is a superset error. In contrast, the ODM would not be allowed to set the 

marked value of p2 before p1. The ordering of parameter values by the ODM makes 

this language domain learnable. However, both the SDM and the ODM will fall prey 

to Clark’s shifting problem if the SVC is strictly enforced (because retrenchment on 

p1 from 10 to 01 is necessary when 01 is the target).  

 

1.3.3.4 Effects of Incremental Learning 

 

No memory for past inputs makes a learner susceptible to chronic undergeneralization 

errors. Undergeneralization means selecting a language that is smaller than the target. 

An undergeneralization error is the opposite of an overgeneralization or superset 

error. Even if the learner does receive an input that triggers a superset language close 

to the target, it still runs the risk of falling right back into a subset language on future 

inputs. The learner will undergeneralize with a high frequency because (given an 

incremental learning framework) it can only use the current input sentence to select 

the next language, and it must pick the smallest language compatible with that input 

(Fodor & Sakas, 2005). If the learner were allowed memory for past inputs this 

situation could be mediated because the smallest language compatible with several 

(or many) inputs is likely to be larger than the smallest language compatible with the 
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single current input sentence.  

 

Fodor and Sakas also suggest modularizing the grammar as another solution to the 

undergeneralization problem. Using this solution the parameters would be grouped 

into different modules such as case, theta, binding, bounding, etc. The learner would 

only be allowed to reset parameters that are located in the same module. The effect of 

this would be to limit the amount of retrenchment that takes place which would in 

turn increase the speed of acquisition. Although attractive from the point of view of 

SP, it is probably not a linguistically viable option as parameters appear to interact 

across modules (see discussion in Clark, 1992). It seems that undergeneralization 

errors due to retrenchment can be just as harmful as superset errors.  

 

1.3.3.5 Subset-free Triggers 

 

Fodor & Sakas (2005) argue (though do not mathematically prove) that unless some 

other solution for excessive retrenchment can be found, the language domain for an 

incremental learner must be such that every language L contains at least one sentence 

such that L is a smallest language containing that sentence. This sentence is referred 

to as a subset-free trigger (sft). All languages in a language domain must contain a 

subset-free trigger in order for that language domain to be learnable.  
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1.4 The Simulation Platform 

 

A simulation platform for first language acquisition was developed. The platform 

contains approximately 6000 lines of C++ code and can be run in either a Windows 

or Linux environment. Virtually all of the simulations are run on a Linux machine. 

The platform was designed to be easily extensible. New learners are created by 

deriving from an abstract base learner class and adding a few lines of code to the 

main Simulation class. The program output is in both tab-delimited format that can be 

easily read into an application for analysis (e.g., Mathematica, Microsoft Excel, etc.) 

or XML format which, in combination with XSL and CSS stylesheets, can be viewed 

using a web browser. Two other utility programs were also written in ASP.NET/C#. 

These utilities are used to query the language domain lattice of languages in order to 

assist in analysis of data and debugging. 

 

1.4.1 CoLAG Domain 

 

The simulation platform was designed to use the CUNY Computational Language 

Acquisition Group (CoLAG) domain (Fodor, Melnikova and Troseth, 2002; Sakas, 

2003). The CoLAG domain was created in order to facilitate simulation research as 

opposed to standard learnability models which use proofs to give results. The CoLAG 

domain is based in the principles and parameters framework (Chomsky, 1981). It is a 
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database of word order patterns for 3072 abstract languages. The word order patterns 

were designed to reflect a wide range of natural language syntactic phenomena. There 

are 13 parameters or points of variation between languages in the domain. Learners 

that run on our simulation platform are presented with grammatical sentences from 

the target language (which can be any of the 3072 languages). All sentences of the 

target language are equally likely to occur. The goal of the learner is to hypothesize 

the target language given the input sentences. 

 

1.4.2 Simulation Program 

 

The simulation program was designed to facilitate easy creation of new learners. 

Inheritance and polymorphism were used extensively throughout the program as a 

means to isolate learner specific logic and factor out common logic. New learner 

creation essentially boils down to writing one new class. 

 

All learners must be derived from the abstract base class Learner. The Learner class 

models the basic structure of what all learners running in our simulation framework 

must provide. All learners must be able to set their first hypothesis according to their 

given algorithm. A learner must be able to reset itself for the next trial. Finally, a 

learner must be able to pick its next grammar hypothesis according to its given 

algorithm. The PickNextHypothesis() procedure is where the bulk of the logic that 

makes each learner unique resides. Figure 3 contains the definition of the base learner 

class. All class and procedure definitions are written in pseudocode (see Appendix B 
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– Pseudocode Guide for pseudocode descriptions). Some programming details from 

the actual implementation are left out in order to make the code more readable. 

 

 
 
 
The simulated learner is trained on each of the 3072 languages in the CoLAG 

domain. Each of those languages is run for a given number of trials, typically 100. All 

learners use the Simulation::Run() procedure to drive processing. The Run procedure 

provides the main processing loop for the simulation. The Run procedure is defined in 

Figure 4. 

ABSTRACT CLASS Learner 
CLASSPROCEDURES 
 VIRTUAL Reset(); 

  VIRTUAL SetFirstHypothesis(); 
 VIRTUAL PickNextHypothesis(); 
ENDCLASSPROCEDURES 
 
CLASSVARIABLES 

  DECLARE HypoGrammID; 
  /* HypoGrammID: Current hypothesis grammar ID. 
 ENDCLASS 
ENDCLASS 
 

Figure 3: Learner base class. 
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The global variables that the program uses are listed in Figure 5. These variables are 

accessible from anywhere in the program. 

 

 
PROCEDURE Simulation::Run () 
 
DECLARE Learner; 
 
/* Learner: Stores the instance of the simulated learner. */ 
 
Learner  Simulation.CreateLearner(); 
 
FOR target IN targetLangs DO 
 Environment.SetupTargetLanguage(target, LanguageDomain); 
 Oracle.SetUp(target); 
 
 FOR i FROM 1 TO NumTrials DO 
  Learner.Reset() 
  SearchSpace.ResetForTrial(); 
 
  Learner.SetFirstHypothesis(); 
 
  WHILE NOT Oracle.AttainedTarget(Learner.HypoGrammID) DO 

  Learner.PickNextHypothesis(); 
 ENDWHILE 

 ENDFOR; 
ENDFOR; 
 
ENDPROCEDURE; 
 

Figure 4: Main processing loop. 
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Other procedure names appear in the Run procedure code and in the derived learner 

overrides of PickNextHypothesis. Descriptions of all of these procedures are given in 

Appendix A – Miscellaneous Procedure Descriptions. 

 

The new derived learner class must provide its own implementations of the Reset(), 

SetFirstHypothesis(), and PickNextHypothesis() procedures. For example, a learner 

that simply chooses a hypothesis grammar at random would be defined as in Figure 6 

through Figure 9.  

 
 
 

DECLARE  Simulation, SearchSpace, Environment, Oracle, LanguageDomain,   
  Lattice; 
 
/* Simulation:  Drives the simulation program. The Run  
    procedure of this class actually executes the simulated  
    learner. 
 SearchSpace:  All grammar hypotheses currently available to the 
    learner. 
 Environment:  Encapsulates the learning environment. The target 
    language sentences are stored here. 
 Oracle:   Responsible for deciding when processing should  
    stop. Stores the target grammar. Stores grammars that  
    are weakly equivalent to the target grammar. Stores  
    supersets of the target grammar. 
 LanguageDomain: All languages in the CoLAG domain. 
 Lattice:  The lattice of all subset-superset relationships in the  
    language domain. 
*/ 
 

Figure 5: Global variables. 
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CLASS ExampleLearner INHERITS Learner 
 CLASSPROCEDURES 
  Reset(); 
  SetFirstHypothesis(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 6: An example learner class. 

PROCEDURE ExampleLearner::SetFirstHypothesis() 
 
/* Choose a grammar hypothesis at random. */ 
HypoGrammID  LanguageDomain.PickRandomGrammar(); 
 
ENDPROCEDURE; 
 

Figure 7: Setting the first hypothesis for the example learner algorithm. 

PROCEDURE ExampleLearner::Reset() 
 
/* No reset code is needed for this particular learner. 
*/ 
 
ENDPROCEDURE; 
 

Figure 8: Resetting the example learner for a new trial. 
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The example learner override of PickNextHypothesis gets an input sentence from the 

linguistic environment and checks to see if the current grammar hypothesis can parse 

it. If it can parse the input sentence then the current hypothesis is retained otherwise a 

new grammar hypothesis is chosen at random from the language domain. It should be 

noted that this example learner is susceptible to superset errors because it does not 

obey SP when choosing a new grammar hypothesis. 

 

 

 

 

 

 

PROCEDURE ExampleLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
/* Sentence:  The current input sentence. */ 
 
/* Get the next input sentence from the linguistic environment. */ 
Sentence  Environment.GetAnInput(); 
 
/* If current hypothesis can parse then just retain it. */ 
IF Licensed(HypoGrammID, Sentence)  
 THEN RETURN; 
ENDIF; 
 
/* Choose a grammar hypothesis at random. */ 
HypoGrammID  LanguageDomain.PickRandomGrammar(); 
 
ENDPROCEDURE; 
 

Figure 9: Example learner algorithm. 
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2 Partial Ordering Learners 
 

2.1 Justification For Adding Memory For Disconfirmed Grammars 

 

The learners being created in the current research make a hypothesis about the target 

language after each individual input sentence. No negative or disconfirming evidence 

about the current hypothesis grammar is given to the learner. If a learner in this 

environment were to hypothesize a superset of the target language then it would be 

impossible for convergence on the target grammar to take place due to the absence of 

negative evidence. We are investigating learners that use the Subset Principle (SP) to 

avoid any superset hypotheses - overgeneralization. Faithful application of SP solves 

the overgeneralization problem but can create a chronic undergeneralization problem. 

The learner can become too conservative and possibly never hypothesize larger target 

languages. One goal of the current research is to incorporate memory for past 

grammars into the learner in order to avoid this undergeneralization problem. Adding 

memory to the learner will decrease the search space by eliminating languages in the 

domain as learning progresses and remedy the undergeneralization problem. But it 

remains an open question how much memory would be needed to produce a 

significant decrease (if any) in the amount of work necessary for the learner to attain 

the target language. For example, for a language domain of 30 parameters, 

eliminating one grammar at a time may not have much of an effect on the efficiency 

of the learner because the search space is so large. 
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2.2 General SP Lattice Learner 

 

Gold (1967) posited a total ordering of grammar hypotheses with respect to 

subset/superset relationships to guarantee that the learner will not hypothesize a 

superset of the target. However, it is computationally unrealistic as a model for child 

language learning. If learners running on our simulation platform were to use a total 

ordering of grammar hypotheses then it would be necessary for them to hypothesize 

virtually all 3072 languages in the domain for those target languages that are located 

at the end of the ordering. The total ordering of grammar hypotheses guarantees that 

the learner will not hypothesize a superset of the target but it is too inefficient to be 

considered from a psychocomputational point of view (though see Fodor & Sakas 

(2005) for discussion). One possible solution to this problem would be to relax the 

restriction of a total ordering of grammar hypotheses to a partial ordering of grammar 

hypotheses. 

 

The General SP Lattice Learner (Lattice learner) uses a lattice or partially ordered set 

of languages (POSET) to navigate the search space (Fodor, Sakas and Hoskey, 2007). 

The partial ordering of the language domain lattice (LD lattice) is based on the 

subset-superset relations of the languages in the domain. Throughout this paper, we 

envision superset languages being “above” their subsets in the lattice. The term 

“smallest” is also used to describe certain languages in the lattice. A smallest 

language is a language that does not contain any subsets. There are many smallest 
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languages in the CoLAG domain. Let SL be the set of smallest languages in the 

CoLAG domain. When the Lattice learner has to choose a new hypothesis it must 

make that selection from SL. All the languages in SL are smallest languages so the 

learner by definition is abiding by SP when it chooses from SL. Whenever the current 

hypothesis is disconfirmed that language is removed from the LD lattice and SL. The 

parents of that node may then be added to SL. The parents of the disconfirmed 

language cannot be blindly added though. All children of the parents must be checked 

to see if they have any other children to make sure they are in fact smallest languages. 

If the parents do have other children then they cannot be added to SL. This check 

guarantees that all languages in SL are smallest languages. The removal of languages 

from SL and the LD lattice is effectively giving the learner memory for past 

grammars. Given that all the learners are error-driven, previously hypothesized 

languages are effectively disconfirmed and should not be hypothesized again. 

 

 

 

Figure 10: Remove language 1 from SL and the lattice. 
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CLASS SPLatticeLearner INHERITS Learner 
 CLASSPROCEDURES 
  Reset(); 
  SetFirstHypothesis(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
  DECLARE Lattice; 
  /* Lattice: Contains all the subset-superset 
    relationships of the grammars. */ 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 11: SPLatticeLearner class. 
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2.3 SP Lattice Learner Variants 

 

All variants of the lattice learner abide by SP and use the lattice to help guide 

hypothesis selection. The parser is also used by each learner to varying degrees. See 

Fodor (1998a) and Sakas & Fodor (2001) for a detailed description of using the parser 

during hypothesis selection. 

 

PROCEDURE SPLatticeLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner 
    is entertaining the idea of making this  
    grammar the next hypothesis. */ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence)  
 THEN RETURN; 
ENDIF; 
 
Lattice.Remove(HypoGrammID); 
 
CandGrammID  Lattice.PickRandomGrammarFromSmallestLanguages(); 
 
IF Licensed(CandGrammID, Sentence)  
 HypoGrammID  CandGrammID; 
 RETURN; 
ENDIF; 
 
Lattice.Remove(CandGrammID); 
 
HypoGrammID  Lattice.PickRandomGrammarFromSmallestLanguages(); 
 
ENDPROCEDURE; 
 

Figure 12: Lattice learner algorithm. 
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The SP Lattice Decode learner variants use the parser initially for each hypothesis 

selection but will ultimately be guided by SP constraints before the next hypothesis is 

selected. The Integrated learner uses the parser in conjunction with the lattice to guide 

hypothesis selection. The Flashlight variant of the SP Lattice learner uses previous 

hypothesis selection to help guide the current hypothesis selection. The Retrench 

learner uses the parser to find a starting point in the lattice for hypothesis selection. A 

detailed description of each of these learners will be given in the sections that follow. 

 

2.3.1 Parallel Parsing Vs. Serial Parsing 

 

From the perspective of computational load on the parser, we can separate parsing 

into two categories, parallel parsing and serial parsing. Parallel parsing means that the 

parser generates every possible parse of a given sentence. The parser is given the 

input sentence and it will continue processing until all possible parses are generated. 

It is unlikely that human language acquisition entails using parallel parsing because it 

is thought to be too computationally demanding a task. Serial parsing means 

generating one parse by selecting at choice points (if there are any) according to a 

given algorithm (e.g., select a path at random). Serial parsing does not generate as 

much information as parallel parsing does but it is much more feasible 

computationally. 
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2.3.2 Decoding 

 

Decoding can be thought of as an intelligent version of serial parsing. The main 

difference between serial parsing and decoding is that decoding actively generates a 

parse while serial parsing does not. Decoding is the process of both parsing the 

current input sentence with the current grammar and if necessary patching additional 

unused treelets into the current grammar in order to complete the parse. Any new 

treelets are added to the parse tree at a point where parsing failed. The pool of treelets 

that the parser draws from is supplied by the supergrammar (ultimately from UG). 

Decoding makes it possible for the learner to generate a valid parse of the current 

input sentence when a normal serial parse would not. The grammar generated by 

decoding may not be the target but it will at the very least parse the current input 

sentence. Some learners may not use the generated grammar due to SP constraints but 

if they do then they will have added treelets to the current grammar that are a 

necessary part of the target grammar. 

 

2.3.3 Decode Learner 

 

The SP Lattice Decode Learner (Decode learner) uses decoding to guide hypothesis 

selection. The current input sentence is parsed with the current grammar. If the 

current grammar can parse the current input sentence then it is retained. Otherwise, 

the learner chooses one parse of the current input sentence at random and checks for 
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membership of the associated grammar in SL. If it is in SL then that grammar 

becomes the current hypothesis. Otherwise the learner retains the previous 

hypothesis.  

 

CLASS SPLatticeDecodeLearner INHERITS SPLatticeLearner 
 CLASSPROCEDURES 
  Reset(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
  
 CLASSVARIABLES 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 13: SPLatticeDecodeLearner class. 

PROCEDURE SPLatticeDecodeLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner  
    is entertaining the idea of making this 
    grammar the next hypothesis. */ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) 
 THEN RETURN; 
ENDIF; 
 
CandGrammID  GetRandomParseGrammarID(Sentence); 
 
IF Lattice.IsAMemberOfSL(CandGrammID) THEN 

Lattice.Remove(HypoGrammID); 
 HypoGrammID  CandGrammID; 
 RETURN; 
ENDIF 
 
ENDPROCEDURE; 
 

Figure 14: SP Lattice Decode learner algorithm. 
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It should be noted that the underlying implementation of the learner may generate all 

the grammar IDs of a given sentence in parallel but it is not performing an actual 

parallel parse. From a linguistic perspective this does not constitute a parallel parse of 

the input sentence. The theoretical learner that the implementation is modeling does 

not have knowledge of any grammars generated in parallel. Choosing one grammar 

ID at random from the set of grammar IDs that can parse the input sentence is one 

way of implementing a theoretical serial parse. As long as the implemented learner 

does not use the existence of the other grammar IDs to help guide hypothesis 

selection in any way it is still a serial parse from the perspective of the theoretical 

learner being modeled. 

 

2.3.4 Decode Favor Unmarked Learner 

 

This SP Lattice Decode Favor Unmarked learner (Decode Favor Unmarked) variant 

is similar to the Decode learner. The only difference occurs during the decoding 

process. Instead of choosing treelets at random this learner will choose treelets 

according to their markedness. A marked value is always a superset of an unmarked 

value although some parameters do not control subset/superset relationships. This 

learner will always choose an unmarked value over a marked value. Choosing 

unmarked values will increase the chance of generating an SL grammar during the 

decoding process.  
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CLASS SPLatticeDecodeFavorUnmarkedLearner INHERITS SPLatticeLearner 
 CLASSPROCEDURES 
  Reset(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 15: SPLatticeDecodeFavorUnmarkedLearner class. 

PROCEDURE SPLatticeDecodeFavorUnmarkedLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner  
    is entertaining the idea of making this  
    grammar the next hypothesis. */ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) 
 THEN RETURN; 
ENDIF; 
 
CandGrammID  PerformSerialParseChoosingUnmarked (Sentence); 
 
IF Lattice.IsAMemberOfSL(CandGrammID) THEN 

Lattice.Remove(HypoGrammID); 
 HypoGrammID  CandGrammID; 
 RETURN; 
ENDIF 
 
ENDPROCEDURE; 
 

Figure 16: SP Lattice Decode Favor Unmarked learner algorithm. 
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2.3.5 Integrated Learner 

 

This SP Lattice Integrated learner (Integrated learner) is similar to the Decode learner 

since decoding also drives hypothesis selection but it differs in the way it constructs a 

parse during decoding. Only treelets that are from SL grammars are available for 

patching into the parse tree. Constraining the pool of treelets in this manner 

guarantees that a parse generated during decoding will be parsable by an SL 

grammar.18 However, there is now a possibility that no parse will be generated during 

the decoding process. The SL grammar treelet set is maintained by the supergrammar 

so there is no extra computational load. Learner efficiency should increase in 

comparison to the decode learners since it no longer relies on random chance to find a 

suitable parse, but constructs one (if possible). 

 

 

 

                                                 
18 Note that this guarantee is implementation-dependant. Our implementation prohibits parameter 
treelet interaction between treelets drawn from the SL set. Such interactions could conspire in such a 
way as to result in a hypothesis language that is actually a superset of one or more SL languages. See 
further discussion in section 2.4.2. 

CLASS SPLatticeIntegratedLearner INHERITS SPLatticeLearner 
 CLASSPROCEDURES 
  Reset(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 17: SPLatticeIntegratedLearner class. 
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PROCEDURE SPLatticeIntegratedLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID, SL, ParseGrammIDs, ParseGrammIDInSL; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner  
    is entertaining the idea of making this  
    grammar the next hypothesis.  
 SL:   Set of smallest language grammar IDs.  
 ParseGrammIDs: Set of grammar IDs that can parse the  
    current input sentence. 
 ParseGrammIDInSL: Set of grammar IDs that can parse the  
    current input sentence that are also in SL. 
*/ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) 
 THEN RETURN; 
ENDIF; 
 
Lattice.Remove(HypoGrammID); 
 
CandGrammID  GetGrammarWithHighestRewardFromSL(); 
 
IF Licensed(CandGrammID, Sentence)  
 HypoGrammID  CandGrammID; 
 RETURN; 
ENDIF; 
 
Lattice.Remove(CandGrammID); 
 
SL  Lattice.GetSmallestLanguages(); 
 
ParseGrammIDs  GetParseGrammarIDs(Sentence); 
 
ParseGrammIDInSL  SetIntersect(SL, ParseGrammIDs); 
 
IF ParseGrammIDInSL.Empty() THEN 

HypoGrammID  
Lattice.PickRandomGrammarFromSmallestLanguages(); 
 RETURN; 
ELSE 
 HypoGrammID  PickRandomGrammarFromSet(ParseGrammIDInSL); 
ENDIF 
 
 
ENDPROCEDURE; 

Figure 18: Integrated learner algorithm. 
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2.3.6 Flashlight 

 

The Flashlight is an add-on to other learners as opposed to a learner itself. The 

flashlight is an add-on that can be applied to most of the lattice learners. The 

flashlight stores a count, c, for each grammar; c tells how often subsets of that 

language have been hypothesized.19 Whenever a new grammar is chosen (abiding by 

SP), all of the supersets of that grammar increment their c values by one. Whenever 

the learner needs to consider a new hypothesis, it will prioritize its choice by the 

highest c value among SL grammars. Choosing hypotheses in this manner is effective 

because when a language that is low in the LD lattice is disconfirmed, there is at least 

one sentence that is not in the disconfirmed language. There is a chance that this 

sentence may be a member of the set difference between the currently hypothesized 

language and one of its supersets. The probability of the current sentence being in the 

set difference does depend on the distribution of sentences in the language domain 

and the shape of the LD lattice. Because of the flashlight, the evidence the learner has 

encountered so far will direct the learner towards supersets of previous hypotheses 

rather than properly intersecting or disjoint languages. This heuristic encourages the 

learner to explore areas of the lattice that have worked well in the past, effectively 

implementing a hill-climbing strategy.  

 

                                                 
19 We call it the flashlight because one can envision shining a flashlight up from the bottom of the 
lattice and all grammars that are illuminated have their counts incremented. 
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CLASS SPLatticeFlashlightLearner INHERITS SPLatticeLearner 
 CLASSPROCEDURES 
  Reset(); 
  SetFirstHypothesis(); 
  PickNextHypothesis(); 
  GetGrammarWithHighestRewardValueFromSL(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
  DECLARE Flashlight; 
  /* Flashlight: Holds reward value counts for each 
     grammar in the lattice.  
  */ 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 19: SPLatticeFlashlightLearner class. 
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2.3.7 Largest Language Optimal Learner 

 

The goal of implementing SP Lattice LL Optimal learner (LL Optimal learner) was to 

create an extremely efficient learner without regard for psychological plausibility, to 

serve as a benchmark learner. This learner is similar to a traditional search algorithm. 

The learner looks to prune the search space as much as possible with each input 

sentence. It essentially operates by pruning the search space from above and 

PROCEDURE SPLatticeFlashlightLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner  
    is entertaining the idea of making this  
    grammar the next hypothesis. */ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) 
 Flashlight.Reward(HypoGrammID); 
 THEN RETURN; 
ENDIF; 
 
Lattice.Remove(HypoGrammID); 
 
CandGrammID  GetGrammarWithHighestRewardFromSL(); 
 
IF Licensed(CandGrammID, Sentence)  
 HypoGrammID  CandGrammID; 
 RETURN; 
ENDIF; 
 
Lattice.Remove(CandGrammID); 
 
CandGrammID  GetGrammarWithHighestRewardFromSL(); 
 
ENDPROCEDURE; 
 

Figure 20: SP Lattice Flashlight learner algorithm. 



 72

searching from below. A largest language set (LL) is maintained by the learner. The 

largest language set contains all of the languages in the domain that do not have a 

superset. If the current hypothesis fails to parse the current input sentence then the 

learner looks to prune the lattice. It does this by parallel parsing the current input 

sentence with all the grammars in LL. Any grammars in LL that cannot parse the 

current input sentence are removed from the lattice. 20 Crucially, all subsets of those 

languages can also be removed since if the supersets cannot parse the current input 

sentence, then necessarily all their subsets also cannot. This allows the learner to 

remove considerably large chunks of the lattice, resulting in a similarly significant 

shrinking of the search space. Next the learner considers the bottom of the lattice and 

decodes the current input sentence. This decoding employs treelets that instantiate the 

grammars in the new SL set, resulting in a single grammar in SL that can parse the 

current input sentence (if one exists); this grammar becomes the current hypothesis. 

Otherwise, the learner removes all grammars in SL from the lattice and reconstructs 

SL. The new SL is checked against the set of grammars that can parse the current 

input sentence. The learner will keep removing grammars and reconstructing SL until 

it finds a grammar that can parse the current input sentence. When it does that 

grammar becomes the new hypothesis. Since the learner prunes the search space by 

performing a parallel parse of the input sentence it is not psychologically feasible. But 

as we show in section 2.4 Results and Discussion it serves well as our optimal 

learner. 

 

                                                 
20 Note that serial decoding of the current input won't suffice since the learner needs to know which 
grammars don't license the current input and serial decoding gives only a single grammar that can 
license the input. 
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CLASS SPLatticeLLOptimalLearner INHERITS SPLatticeLearner 
 CLASSPROCEDURES 
  Reset(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 21: SPLatticeLLOptimalLearner class. 
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PROCEDURE SPLatticeLLOptimalLearner::PickNextHypothesis() 
 
DECLARE Sentence, LL, SL; 
DECLARE ParseGrammIDs, RemoveGrammIDs, CandGrammIDs; 
/* Sentence:  The current input sentence. 
 LL:   Set of largest language grammar IDs.  
 SL:   Set of smallest language grammar IDs.  
 ParseGrammIDs: Set of grammar IDs that can parse the 
    current input sentence. 
 RemoveGrammIDs: Set of grammar IDs to remove from the  
    lattice. 
 CandGrammIDs: Set of candidate grammar hypotheses. The  
    learner is entertaining the idea of making  
    one of these grammars the next hypothesis. 
*/ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) THEN 
 RETURN; 
ENDIF; 
 
LL  Lattice.GetLargestLanguages(); 
ParseGrammIDs  GetParseGrammarIDs(Sentence); 
RemoveGrammIDs  SetDifference(LL, ParseGrammIDs); 
 
/* Add the previous hypothesis to the set of grammars to remove. */ 
RemoveGrammIDs.Add(HypoGrammID); 
 
Lattice.RemoveIncludingAllDescendents(RemoveGrammIDs); 
 
/* Recalculate this set since grammar IDs have been removed. */ 
ParseGrammIDs  GetParseGrammarIDs(Sentence); 
 
DO 
 SL  Lattice.GetSmallestLanguages(); 
 CandGrammIDs  SetIntersect(SL, ParseGrammIDs); 
 

RemoveGrammIDs  SetDifference(SL, ParseGrammIDs); 
 
 IF CandGrammIDs.Size() = 1 THEN 
  HypoGrammID  CandGrammIDs[0]; 
 ELSE IF CandGrammIDs.Size() > 1 THEN 
  HypoGrammID  PickRandomGrammarFromSet(CandGrammIDs) 
 ENDIF 
 

Lattice.RemoveIncludingAllDescendents(RemoveGrammIDs); 
 

/* Recalc ParseGrammIDs since grammar IDs were removed. */ 
ParseGrammIDs  GetParseGrammarIDs(Sentence); 

WHILE CandGrammIDs.Size() = 0 
 
ENDPROCEDURE; 

Figure 22: LL Optimal learner algorithm. 
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2.3.8 Retrench Learner 

 

The Retrench learner operates differently than the other SP Lattice learners. The 

Retrench learner is allowed to choose a grammar from anywhere in the LD lattice but 

it must retrench back down the lattice until it reaches a grammar that is safe with 

regards to superset errors. Retrenchment entails giving up the grammar that the 

learner just chose in the lattice in favor of a smaller grammar in the lattice if there is 

one (see Fodor & Sakas (2005) for a detailed discussion of retrenchment). 

Retrenching may cause the learner to give up the target language at this learning step, 

but it is necessary to ensure that the learner abides by SP. The Retrench learner has an 

advantage over the other SP lattice learners because it is not constrained to 

hypothesize grammars in SL but it is at a disadvantage because it is potentially 

susceptible to frequent undergeneralization problems due to the lack of memory; 

since SL grammars aren’t deleted the depth of retrenchment (i.e., the amount of 

undergeneralization) is not reduced during the acquisition process. 

Undergeneralization problems are more likely to arise for the Retrench learner if the 

domain ambiguity is high. Domain ambiguity refers to the amount of overlap21 

between the sentences of each language in the domain. If there is a large amount of 

overlap between languages then domain ambiguity is high. Further discussion is 

presented in section 2.4.6. The starting point for retrenchment is determined by 

                                                 
21 Throughout I use the term overlap to refer to the intersection of two sets. The sets may be either 
properly intersecting or in a subset-superset relationship. 
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decoding the current input sentence. Paths are chosen at random when choice points 

are encountered during decoding. 

 

 

CLASS RetrenchLearner INHERITS Learner 
 CLASSPROCEDURES 
  Reset(); 
  SetFirstHypothesis(); 
  PickNextHypothesis(); 
  Retrench(GrammarID); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
  DECLARE Lattice, CandGrammID; 
  /*  Lattice:  Contains all the subset- 
      superset relationships of the  
      grammars.  
   CandGrammID: A candidate grammar hypothesis.  
      The learner is entertaining the  
      idea of making this grammar the  
      next hypothesis. */ 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 23: RetrenchLearner class. 
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PROCEDURE RetrenchLearner::PickNextHypothesis() 
 
DECLARE Sentence; 
 
/* Sentence:  The current input sentence. */ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) 
 Flashlight.Reward(HypoGrammID); 
 THEN RETURN; 
ENDIF; 
 
ParseGrammIDs  GetParseGrammarIDs(Sentence); 
 
CandGrammID  PickRandomGrammarFromSet(ParseGrammIDs); 
 
/* Retrench will actually set the grammar hypothesis. */ 
Retrench(CandGrammID); 
 
ENDPROCEDURE; 
 

Figure 24: Retrench learner algorithm. 
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PROCEDURE RetrenchLearner::Retrench(RetrenchGrammarID, Sentence) 
 
DECLARE CurrLatticeGrammID, SubsetGrammIDs, FoundRetrenchGrammar; 
 
/* CurrLatticeGrammID: The current place in the lattice  
     where retrenching is taking place. 
 SubsetGrammIDs:  Set of grammar IDs which are subsets  
     of the current place of retrenchment  
     in the lattice. 
 SubsetGrammID:  Loop variable used while iterating  
     through the SubsetGrammIDs  
     collection. 
 FoundRetrenchGrammar : Boolean variable indicating whether  
     or not a subset grammar was found  
     that the learner can retrench to.*/ 
 
CurrLatticeGrammID  RetrenchGrammarID; 
 
DO 

SubsetGrammIDs  Lattice.GetSubsetIDs(CurrLatticeGrammID); 
 FoundRetrenchGrammar  FALSE; 
 
 FOREACH SubsetGrammID IN SubsetGrammIDs 
  IF Licensed(Sentence, SubsetGrammID) THEN 
   CurrLatticeGrammID  SubsetGrammID; 
   FoundRetrenchGrammar  TRUE; 
   RETURN; 
  ENDIF 
 ENDFOREACH 
  
WHILE FoundRetrenchGrammar = TRUE 
 
HypoGrammID  CurrLatticeGrammID; 
 
ENDPROCEDURE; 
 

Figure 25: Retrench procedure. 



 79

2.4 Results and Discussion 

 

Each learner was run on all 3072 languages of the CoLAG domain. 100 trials per 

language were run. For each trial, learners were limited to a maximum of 10,000 

input sentences. If the learner reached the maximum number of input sentences then 

the trial was considered a failure (i.e. the learner did not learn the language on that 

trial). The “Avg of 99% values” statistic is used to approximate the worst case 

performance of the learner. This value is calculated by taking the average of the 99th 

fastest trials for each of the 3072 languages in the CoLAG domain.  

 

Learner Avg 
Sentences 

for Learned 
Trials 

Avg of 99% 
values for 
Sentences 

for Learned 
Trials 

Avg 
Parses for 
Learned 
Trials 

Avg of 99% 
Values for 
Parses for 
Learned 
Trials 

Pct 
Learned

Lattice 858.69 1453.63 1588.99 2643.41 100

Decode 2482.54 6290.64 2482.54 6290.64 42

Decode 
Favor 
Unmarked 

454.16 1686.99 454.16 1686.99 26

Integrated 140.43 286.24 140.43 286.24 100

LL Optimal 15.55 58.58 435.55 813.97 100

Lattice w/ 
Flashlight 

900.88 968.28 1669.76 1744.68 100

Retrench 188.17 696.75 585.83 2134.15 95

Table 1: Lattice learner results on CoLAG domain. 
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2.4.1 LL Optimal Best For Sentences but Not Parses 
 
 

As expected, the SP Lattice LL Optimal learner (LL Optimal learner) performs the 

best of all learners under study when measuring learner efficiency in terms of the 

number of sentences consumed, but performs notably worse than the most efficient 

psychologically feasible learner, the Integrated learner, in terms of the number of 

parses required. This learner is optimal in the sense that it is free to aggressively 

prune the search space and drastically reduce the number of languages that can be 

hypothesized. This pruning radically reduces the number of input sentences required 

but not the number of parses. The LL Optimal learner took three times as many parses 

as the Integrated learner took. When encountering an input sentence that the current 

hypothesis grammar can't parse, the LL Optimal learner must parse the current input 

sentence using the grammars of every language in the largest language set. This is 

necessary in order to determine which languages can (or cannot) be removed from the 

lattice. However, the LL Optimal learner efficiently decodes the input sentence using 

treelets from smallest language grammars, just as the Integrated learner does, the 

additional pruning phase employed by the LL Optimal learner increases the 

computational cost in terms of parses as compared to the Integrated learner. 

 

2.4.2 Integrated Learner Performs Best 
 

The SP Lattice Integrated learner (Integrated learner) is able to converge quickly on 

the target language because of the constrained treelet selection it uses during 
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decoding of the input sentence. It is guaranteed to choose a parse that corresponds to 

a language in the smallest language set, if one exists that can parse the current input. 

By contrast, the SP Lattice Decode learner (Decode learner) and SP Lattice Decode 

Favor Unmarked learner (Decode Favor Unmarked learner) also use the parser but 

they rely on random chance (in the case of the Decode learner) and a count of 

unmarked parameters (in the case of the Decode Favor Unmarked learner) to select a 

serial parse; there is no guarantee that the parse selected corresponds to a language 

that is currently in the SL set. If the selected serial parse does not correspond to a 

language in the SL set then the current hypothesis is retained and no learning takes 

place. There may in fact be many parses that do correspond to languages in the 

smallest language set that are overlooked by the Decode or Decode Favor Unmarked 

learners. Consequently, these learners miss learning opportunities due to incorrect 

parse selection (with respect to the SL set). Incorrect parse selection decreases the 

frequency of hypothesis changes, which in turn, decreases the number of times that a 

language can be removed from the search space. Hence memory for past grammars is 

underutilized. 

 

Since the Integrated learner, on the other hand, is guaranteed to select a serial parse 

that corresponds to a language in the smallest language set (if one exists), the benefit 

of memory for past grammars is significantly increased. The Integrated learner will 

hypothesize different languages more often and consequently eliminate more 

languages from the search space. 
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Unfortunately, the guarantee of selecting a smallest language during a serial parse is 

difficult to establish within current linguistic theory. Our implementation constrains 

the learner in such a way that an SL grammar is chosen (if one exists). However, it is 

probably the case in the domain of natural languages that syntactic parameters can 

conspire in non-transparent ways (Fodor & Sakas, 2004). This might mean that two 

treelets drawn from the pool of SL set treelets, might in combination, guide the 

learner to entertain a non-SL set hypothesis. Obviously, this would be a fatal error if 

the non-SL set hypothesis was a superset of the target language. However, the 

positive results presented in this thesis of the efficiency of the Integrated learner 

recommend further linguistic investigation of whether or not these subset-superset 

parametric conspiracies could possibly be innately endowed, i.e., part of UG 

principles (see discussion in Fodor & Sakas 2005 of subset-superset parametric 

conspiracies). 

 

2.4.3 Higher Parsing Priority Hinders The Decode Learner 

 

The performance of the SP Lattice Decode learner (Decode learner) suffers because it 

prioritizes parsing over SP which is employed post-parsing to avoid potential superset 

errors. This learner operates by decoding the current input sentence in order to find a 

candidate hypothesis grammar. The candidate hypothesis grammar is checked to see 

if it is a member of the current SL set. If it is in the SL set then it becomes the current 

hypothesis grammar otherwise the previous hypothesis grammar is retained. Progress 

is made towards the target grammar only in the case that the learner chooses a 
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candidate hypothesis grammar that is a member of the current SL set. If the generated 

parse does not correspond to a grammar in the current SL set then, due to SP 

considerations, the learner must not change its current hypothesis. There may have 

been a suitable new hypothesis grammar in the SL set that could parse the current 

input which was missed by the random selection of treelets at choice-points 

encountered during decoding. 

 

For this learner, target grammars that are not at the bottom of the lattice are harder to 

learn. This is the case because there are sentences in those target languages which 

aren't in SL set languages. During learning, the decoding process will often generate 

parses that correspond to non-SL set languages and consequently more input 

sentences will be discarded than if the target language were in the SL set.22 To 

acquire a target grammar that is not in the SL set it is necessary for the learner to 

disconfirm all of the target grammar’s subsets. Once all of the target grammar’s 

subsets have been disconfirmed then the target will become a member of the SL set 

and it can be selected as a hypothesis. This learner can disconfirm grammars only 

after they are hypothesized. Once a grammar is disconfirmed the learner will use its 

memory for past grammars to ensure that the disconfirmed grammar is not selected 

again as a hypothesis grammar. 

 

The distribution of sentences in the target language with respect to its subset and 

superset languages will determine how fast convergence will be for this learner. If 

                                                 
22 Technically this isn't quite true. It could be the case that by sheer luck the learner always chooses 
treelets that correspond to languages in the SL set. Note that this situation reduces exactly to our 
Integrated Learner (see section 2.3.5 Integrated Learner). 
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there is not a large overlap between sentences of the target language (when the target 

is not a member of SL) and the sentences of languages in SL, then learning will be 

slow. The large percentage of sentences in non-SL set languages cause the learner to 

discard many input sentences and retain the previous grammar hypothesis. Inputs are 

wasted and learner efficiency is decreased. A large percentage of sentences in SL set 

languages will increase learner efficiency. Even if the learner chooses languages in 

the SL set other than the target it will at least be able to remove those grammars from 

the search space when they are disconfirmed. There will be far fewer times when the 

learner discards the current input sentence and just retains the current hypothesis.  

 

2.4.4 CoLAG Is Unlearnable For The Decode Favor Unmarked Learner 

 

The SP Lattice Decode Favor Unmarked Learner (Decode Favor Unmarked learner) 

is similar to the SP Lattice Decode learner (Decode learner) but is an attempt to 

improve performance by using a heuristic to increase attention to SP considerations. 

This learner will always choose the parse that corresponds to the most unmarked 

grammar. It does this by choosing an unmarked parameter value (treelet) when 

encountering a choice point during decoding. Exactly like the Decode learner, if the 

candidate hypothesis is in the SL set, it is chosen as the (new) current hypothesis 

otherwise the (previous) current hypothesis is retained. 

 

Some languages in the CoLAG domain are unlearnable for the Decode Favor 

Unmarked learner. The unlearnable languages are a result of the unmarked grammar 
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count search heuristic. The unmarked grammar count search heuristic can sometimes 

cause the learner to get stuck in a local maximum. This occurs only under certain 

conditions, specifically, when the unmarked grammar search heuristic causes the 

parser to select candidate grammars that are incompatible with SP. This results in the 

learner not being able to change its hypothesis, since a grammar must necessarily be 

hypothesized in order to attain the target. The inability of the learner to hypothesize a 

given language results in that language, and all supersets of it, being unlearnable. 

 

Any subset-superset pair of languages where the superset has a greater unmarked 

count than the subset will cause some languages in the domain to be unlearnable. The 

unlearnable languages will be the subset of that pair and all supersets of that subset. 

These languages are unlearnable as a result of the way the SP Lattice Decode Favor 

Unmarked Learner chooses a parse during decoding. The SP Lattice Decode Favor 

Unmarked Learner will always choose the parse that corresponds to the most 

unmarked grammar. If the superset has more unmarked values then the superset parse 

will always be chosen over the subset parse during decoding. The learner will now 

check to see if the superset parse corresponds to a language in the SL set. Since the 

superset is not currently in the SL set, the learner will just retain the previous 

grammar hypothesis. The superset grammar cannot become a hypothesis until it is a 

member of the SL set but it cannot be a member of the SL set until all of its subsets 

are removed from the lattice. In order for all of the subsets to be removed each subset 

must be hypothesized at some point during learning. This is where the problem arises. 

The subset with the lower unmarked count can never be hypothesized because the 
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learner will always favor the superset grammar as a candidate hypothesis due to its 

higher unmarked count. The superset grammar will always be favored as a candidate 

over the subset grammar but it cannot become a hypothesis until the subset grammar 

is removed. The subset cannot become a hypothesis because the superset grammar 

has a higher unmarked value count. This is a deadlock situation. Both the subset and 

the superset are unlearnable. In addition, all supersets of the problematic subset are 

also unlearnable. This is the case even if those supersets have lower unmarked value 

counts. Those supersets are unlearnable because they require the problematic subset 

to be removed from the lattice at some point and that will never happen. 

 

The Decode Favor Unmarked learner makes use of memory for past grammar 

hypotheses but this does not help with the learnability of some languages in the 

domain. Current grammar hypotheses are removed from the lattice only when they 

fail to parse the current input sentence. This learner gives priority to the parser when 

selecting the next grammar hypothesis. If the parser chooses candidates that are not 

compatible with SP then the learner will retain the previous hypothesis because SP 

must be obeyed. The secondary status of SP creates problems for this learner just as it 

did for the Decode learner. The unmarked count constraint imposed on the parser 

only approximates SP considerations. The actual application of SP is done after 

parsing has been completed. Unfortunately, unmarked values for parameters don’t 

necessarily correspond to subsets. In order for this learner to make progress towards a 

target that is not currently in the SL set, grammars in the SL set must be 

hypothesized. Hypothesizing grammars in the SL set becomes hard because the 
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grammars with the most unmarked values are being selected and those grammars may 

not be in the SL set at the moment. All parameters are used when counting marked 

and unmarked, not just subset/superset parameters. The non-subset parameters 

adversely affect the unmarked counts and cause some languages in the domain to be 

unlearnable. 

 

There is a special case to the subset-superset pair unmarked count problem which is 

in fact learnable. If the subset of the pair starts out at the bottom of the lattice then 

both languages are learnable. They are learnable because there is a chance that the 

subset language can be chosen as the initial grammar hypothesis. Selection of the 

initial grammar hypothesis is done using a uniformly distributed random selection of 

the grammars at the bottom of the lattice. This random selection does not take the 

unmarked count into consideration so it is possible to hypothesize the subset of the 

offending subset-superset pair. If the subset is chosen then it will eventually be 

disconfirmed and stored in the memory for past grammars. It will no longer be in 

conflict with the superset grammar. Any problems related to this specific subset-

superset pair would now be resolved. 

 

Note that many of the problems for this learner would disappear if there were a 

transparent relationship between the parameter values and the languages they 

generate. I.e., if grammar markedness truly reflected the subset-superset relationships 

in the space of languages. This is stipulated a priori in many theoretical discussions of 

SP (see for example, the Subset Condition and Independence Principle of Manzini 
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and Wexler (1987) and Wexler and Manzini (1987) and the Simple Defaults Model of 

Fodor and Sakas (2005)) but clearly does not hold for the empirical work on the 

CoLAG domain presented in this thesis. 

 

2.4.5 Impact of the Flashlight 

 

The Flashlight is used as a type of memory for the success of past grammars. The 

goal of the flashlight is to point the learner towards the most successful grammars as 

it moves through the search space. The flashlight biases the learner towards 

hypothesizing languages that have most often contained an encountered input 

sentence; i.e., supersets of previously hypothesized languages. This keeps the learner 

focused on a specific area of the lattice that has proved successful at licensing inputs 

in the past. 

 

Interestingly, results show that the SP Lattice Flashlight learner (Flashlight learner) 

performs about the same as the SP Lattice learner (Lattice learner) in terms of the 

average number of sentences and the average number of parses but it has greatly 

increased learner efficiency in terms of the 99% values for those two metrics; from 

Table 1, without the flashlight Avg # sents: 858.69, 99% value: 1453.63 and with the 

flashlight Avg # sents: 900.88, 99% value: 968.28. Without the flashlight Avg # 

parses: 1588.99, 99% value: 2643.41 and with the flashlight Avg # parses: 1669.76, 

99% value 1744.68. This implies that the variance across the learning times of the 

target languages in the domain has decreased dramatically. 
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Learner Subsets  
Avg Sents 

Avg Height 
 Avg Sents 

Subsets  
Avg Parses 

Avg Height  
Avg Parses 

Lattice .80 .87 .82 .89 

Flashlight .06 .00 .07 .01 

Table 2: Pearson r correlations for Lattice and Flashlight learners. 

 

Analysis of the behavior of the Lattice learner with the flashlight attached reveals 

that, the flashlight offers the greatest benefit to target languages higher in the lattice. 

Target languages higher in the lattice are effectively deeper in the search space since 

(subset) languages below them need to be considered and eliminated first.23 Table 2 

illustrates the relationship between the location of a language in the lattice and the 

computational effort required by a given learner to acquire the target language. The 

numbers in Table 2 are Pearson r correlations which range from 1.0 to -1.0. A value 

of 1.0 means there is a perfect correlation between the sets of values being compared. 

For example, a high correlation between subsets and sentences would mean that an 

increase in the number of subsets would cause an increase in the number of sentences 

required to acquire the target language. A value of 0.0 means there is no correlation 

between the sets of values. A value of -1.0 means that as one value increases the other 

decreases and vice versa. The Lattice learner has a high correlation on all of the 

Pearson r comparisons that were measured (subsets to sentences, subsets to parses, 

avg height to sentences, avg height to parses). This means that languages that are 

                                                 
23 Note that this is true since we are attaching the Flashlight heuristic to the SP-lattice learner. Other 
learners might or might not require entertaining lower languages in the lattice before ones higher in the 
lattice. We attached the Flashlight to this particular learner, since it is the most nondeterministic of the 
lattice learners and subsequently the best to determine the potential benefit of the Flashlight. 
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higher in the lattice are harder for it to learn. Importantly, the Flashlight learner shows 

no correlation between the location of the target language in the lattice and the 

computational effort required to acquire the target.  

 

Why are the higher languages harder to learn for the Lattice learner? At a minimum, 

languages higher in the lattice have more subsets that have to be hypothesized and 

subsequently disconfirmed. All subsets of a language must be hypothesized and 

disconfirmed before the Lattice learner can hypothesize a given target language. 

When the Lattice learner selects a hypothesis language from the SL set there is no 

guarantee that the language being selected will be a subset of the target language. The 

Lattice learner is performing unnecessary work when it hypothesizes languages which 

are not subsets of the target language. Target languages higher in the lattice force the 

Lattice learner into making more random choices which increases the chances of 

selecting non-subsets of the target. An increased number of random selections causes 

an increased number of times that the learner will select garden path hypotheses, 

which will in turn increase the number of sentences necessary to acquire the target 

language. The flashlight learner decreases the amount of times that the learner selects 

non-subsets of the target language. It forces the learner to hypothesize languages 

which are subsets of the target and consequently reduces the amount of effort 

necessary for the learner to acquire the target language. 

 

Results show that the Lattice learner and the Flashlight learner require about the same 

computational effort to acquire languages lower in the lattice. This makes sense 
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because acquiring languages lower in the lattice is more dependent on random 

chance. If a language is at the bottom of the lattice then all of the flashlight counts 

will be 0 and the Flashlight learner is reduced to selecting at random just as the 

Lattice learner does. For languages that are just above the bottom, say 1 level up, the 

flashlight will still not help much because all of the target language’s subsets will 

have flashlight counts of 0. However, it will be easier to find the target language 

when it becomes a member of the SL set because it will have a flashlight count 

greater than 0.  

 

The effectiveness of the flashlight depends on the percentage of subset-free triggers in 

the target language. A high percentage of subset-free triggers means that most 

sentences will increase only the target language’s activation count24. A low 

percentage of subset-free triggers may or may not be bad. A small amount of subset-

free triggers combined with numerous overlapping languages will mean that many 

languages will have their activation counts increased. A small amount of subset-free 

triggers combined with only a few overlapping languages will mean not as many 

languages with high activation counts and consequently the target language will be 

easier to find.  

 

2.4.6 Retrench Learner Is Good But CoLAG Is Unlearnable 

 

                                                 
24 The activation counts of all superset languages of the target language will also be increased but they 
are irrelevant because the only way those languages can become possible hypotheses is to disconfirm 
the target language and that can never happen with the SP Lattice Flashlight learner. 
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The Retrench learner only learned on 95% of the trials. This was due to the 

configuration of the lattice for certain languages and their subsets. For example, for 

language 3 in the CoLAG domain, all 100 trials failed. Language 3 has three subsets: 

Languages 1, 67 and 579. All of the sentences in language 3 are members of one of 

the subset languages. There are no subset-free triggers in language 3. The absence of 

subset-free triggers in language 3 means that language 3 is unlearnable using the 

Retrench learner. The Retrench learner will retrench down the lattice until there are 

no subset languages that can parse the current input sentence. For language 3 the 

Retrench learner will always retrench to one of its subsets because every sentence in 

language 3 is in one of language 3’s subsets. There are no subset-free triggers that 

will allow the learner to hypothesize language 3. In general, any language that has no 

subset-free triggers is unlearnable using the Retrench learner. There is no way to 

escape the retrenchment problem that arises. The Retrench learner has no memory for 

past grammars so it cannot disconfirm the problematic subset grammars. The 

problematic grammars will always be allowed to become the current hypothesis. If 

memory for past grammars were used then this learner could escape the retrenchment 

problem. The learner would fall into the problematic subsets but those subsets would 

eventually be disconfirmed and removed from the lattice. As the subsets are removed 

sentences that were previously members of subsets now become subset-free triggers 

for the duration of the trial. It would now be possible to hypothesize the target 

grammar and therefore learn the language. 
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Language Total 
Sentences 

Sentences 
in common 

with 
subsets 

Subset-
free 

Triggers 

Pct of 
overlap 

Pct of Learned 
Trials for 
Retrench 
Learner 

2642 312 300 12 96.15% 91%

2649 408 396 12 97.06% 77%

6754 279 278 1 99.64% 35%

Table 3: Retrench learner performance on selected languages from the CoLAG 
domain. 

 

The percentage of subset-free triggers can also affect learner performance (see Table 

3). In general, languages with higher percentages of subset-free triggers will be easier 

to learn. In the CoLAG domain some languages such as 2649 and 2642 are learned on 

some of their trials. Language 2649 has 77% of its trials learned whereas 2642 has 

91% of its trials learned. The percentage of learned trials depends on the overlap 

percentage between sentences in the superset language and sentences in the union of 

the subset languages.  

 

2.4.7 The Parser and SP Work Best in Tandem 

 

Results showed that learners giving equal priority between parsing and SP 

considerations performed best. The equal priority between parsing and SP allowed 

learners to quickly attain hypotheses that were both relevant to the current input 

sentence and compliant with respect to SP constraints. Giving one or the other 
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priority seemed to decrease learner efficiency. Hypothesis selection becomes more of 

a hit or miss proposition when one is given priority over the other. For example, the 

Decode learners give the parser priority and as a result they must hope that the 

grammar associated with the constructed parse is compatible with SP constraints. If 

that grammar is not compatible with SP constraints then the previous hypothesis must 

be retained. Retaining the previous hypothesis means that nothing will have been 

learned from the current input sentence. More input sentences are needed in order to 

discover candidate hypotheses that are compatible with SP. This is a waste of 

computational resources. Giving SP priority can also decrease learner efficiency. The 

SP Lattice and SP Lattice Flashlight learners give SP priority. These learners will 

only select languages from the bottom of the lattice. Constraining hypotheses in this 

way is good for SP but it does not utilize information that is present in the current 

input sentence. The parser is employed simply to confirm or disconfirm hypotheses 

that were chosen strictly on the basis of SP considerations. Languages that are 

completely disjoint with respect to the target are free to be selected as the current 

grammar hypothesis. The side effects of selecting hypotheses that are not related to 

the input are not nearly as bad for the SP priority learners. These learners are able to 

utilize memory for past grammars and will not fall into the trap of selecting that 

hypothesis again. The effects of adding memory for past grammars are not masked 

like they are when the parser is given priority. When the parser settles on a parse that 

corresponds to a grammar that is not compliant with SP it must revert back to the 

previous hypothesis. Memory for past grammars cannot be utilized in this case 

because the previous grammar hypothesis was not eliminated. The benefits of 
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memory for past grammars are never seen using the Decode and Decode Favor 

Unmarked learners because SP compliant hypothesis grammars are slow to be 

selected or even impossible to be selected.  

 

Memory for past grammars should increase learner efficiency as long as it is 

compatible with the learner. Compatible, in this sense, means that the learner is 

actually able to utilize the memory. In the case of the Decode learners, the memory 

was there but it was effectively unreachable. Poor parse selection forced the learner to 

retain the current hypothesis and consequently underutilize the memory. The SP 

Lattice learner did not perform best in terms of sentences or parses but it was still able 

to learn all of the languages in the domain. This high learnability was a result of the 

memory being accessible. The SP Lattice learner was able to continually change its 

hypothesis and as a result shrink the search space and eventually attain the target. 

Thus, as expected, memory for past grammars is effective as long the learner is of a 

kind that is able to use it. 
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3 Comparison of Partial and Total Ordering Learners 

 

The learners that have been presented thus far all use a partial ordering (the lattice) to 

drive hypothesis selection and abide by the Subset Principle. Early research in 

language learning performed by Gold (1967) proposed using a total ordering of 

languages to drive hypothesis selection. Pinker (1979) has argued that the use of a 

total ordering to drive hypothesis selection is psychologically and computationally 

infeasible as a model of first language acquisition. We developed a partial ordering in 

order to keep the essential relationships given by a total enumeration while at the 

same time being psychologically and computationally feasible as a model of first 

language acquisition. This chapter investigates the efficiency of partial ordering 

learners compared to total ordering learners.  
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3.1 Why Use A Partial Ordering? 

 

Although Gold's (1967) enumeration learner is the provably fastest learner given 

infinite classes of languages to be searched, in this chapter we set out to show that the 

partial ordering learners described in this thesis will be substantially faster than 

Gold's learner given a finite domain of languages. Gold’s learner is only allowed to 

hypothesize languages in the order that they appear in the given enumeration. At any 

given point in the learning process the total ordering learner is only allowed to 

hypothesize the next language in the enumeration. With regards to SP, the only 

constraint for language learners in general is that they should hypothesize subsets of a 

given language before supersets of that language. The total ordering learner obeys SP 

but it cannot exploit the fact that other languages may not have a subset-superset 

relationship and that they are free to be selected with respect to SP. The partial 

ordering learner is similar to the total ordering learner in that it enforces SP but it is 

relieved of the burden of following a full enumeration of all the languages in the 

domain. The freedom that the partial ordering learner has with respect to hypothesis 

selection as compared to the total ordering learner will improve efficiency.  

 

3.2 Total Ordering Learners 

 

The total ordering learners that we have implemented operate in the same manner as 

Gold’s learner with some slight modifications. Identification in the limit is not 
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invoked to determine when a learner has acquired the target language. Acquisition of 

the target language is defined to occur when the learner hypothesizes the target 

language or a language that is weakly equivalent to the target language. Identification 

by enumeration is used to determine hypothesis selection just as in Gold’s learner. 

The enumeration given to the learners consists of all languages in the CoLAG 

domain. Gold proved that no learner using the identification by enumeration guessing 

rule is uniformly faster than any other learner using the identification by enumeration 

guessing rule so the order of the languages in our enumeration does not matter with 

respect to learner performance on the language domain as a whole. However, the 

enumeration will be constrained such that all subsets of a given language are 

guaranteed to appear before that given language in the enumeration. This ensures that 

the total ordering learner will abide by the Subset Principle. Languages which do not 

have subsets or supersets may appear anywhere in the enumeration. 

 

3.3 Gold’s Total Ordering Learner 

 

What I will call Gold’s total ordering learner is equipped with memory for all 

encountered input sentences. A candidate hypothesis is adopted if and only if it 

licenses all of the input sentences presented. The class definition for the learner is 

given in Figure 26 and the algorithm is detailed in Figure 27. The initial grammar 

hypothesis will be set to the first grammar in the enumeration. The learner gets a 

sentence from the input environment and checks to see if it is licensed by the current 

hypothesis. If it is then the current hypothesis will be retained otherwise a new 
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hypothesis will be chosen. When choosing a new hypothesis the learner will iterate 

through the enumeration until it finds a grammar that can license all of the input 

sentences that have been encountered. 

 

 

CLASS TotalOrderingLearner INHERITS Learner 
 CLASSPROCEDURES 
  Reset(); 
  SetFirstHypothesis(); 
  PickNextHypothesis(); 
 
  LicensedAll(GrammarID); 
  AddSentence(Sentence); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
  DECLARE TotalOrdering; 
  DECLARE SentenceVector; 
 /* TotalOrdering: Enumeration containing all languages 
    in the CoLAG domain.  
    SentenceVector:Collection of all input sentences  
    presented to the learner so far. */ 

ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 26: TotalOrderingLearner class. 
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3.4 Memoryless Total Ordering Learner 

 

The memoryless version of the total ordering learner is the same as Gold’s Total 

Ordering learner except that the memoryless version has no memory for past input 

sentences. The class definition for the learner is given in Figure 28 and the algorithm 

is detailed in Figure 29. The initial grammar hypothesis will be set to the first 

grammar in the enumeration. This learner will retain the current hypothesis as long as 

it can parse the current input sentence. If the current hypothesis cannot parse the 

current input sentence the learner will move through the enumeration until it finds a 

grammar that can parse it. 

PROCEDURE TotalOrderingLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner  
    is entertaining the idea of making this  
    grammar the next hypothesis. */ 
 
Sentence  Environment.GetAnInput(); 
AddSentence(Sentence); 
 
IF Licensed(HypoGrammID, Sentence) 
 THEN RETURN; 
ENDIF; 
 
DO 

CandGrammID  MoveToNextGrammarHypothesis(); 
WHILE (NOT LicensedAll(CandGrammID)); 
 
HypoGrammID  CandGrammID; 
 
ENDPROCEDURE; 
 

Figure 27: Gold’s Total Ordering learner algorithm. 
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CLASS TotalOrderingMemorylessLearner INHERITS TotalOrderingLearner 
 CLASSPROCEDURES 
  Reset(); 
  SetFirstHypothesis(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 28: TotalOrderingMemorylessLearner class. 

PROCEDURE TotalOrderingMemorylessLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner  
    is entertaining the idea of making this  
    grammar the next hypothesis. */ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) 
 THEN RETURN; 
ENDIF; 
 
DO 

CandGrammID  MoveToNextGrammarHypothesis(); 
WHILE (NOT Licensed(CandGrammID)); 
 
HypoGrammID  CandGrammID; 
 
ENDPROCEDURE; 
 

Figure 29: Memoryless Total Ordering learner algorithm. 
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Although this version of the total ordering learner is more psychologically feasible as 

a model of human language acquisition than the Total Ordering learner (Figure 26 

and Figure 27) since it does not endow the learner with the capacity to store an 

infinite number of input sentences, the number of parses per input sentence is 

unconstrained (up to the size of the domain) which is still too computationally 

demanding to be considered as a realistic model of human language learning. 

 

3.5 Constrained Memoryless Total Ordering Learner 

 

The constrained memoryless total ordering learner is the same as the memoryless 

total ordering learner except that it is limited to two parses per input sentence. The 

class definition for the learner is given in Figure 30 and the algorithm is detailed in 

Figure 31. 

 

 

CLASS TotalOrderingConstrainedMemorylessLearner INHERITS 
TotalOrderingMemorylessLearner 
 CLASSPROCEDURES 
  Reset(); 
  SetFirstHypothesis(); 
  PickNextHypothesis(); 
 ENDCLASSPROCEDURES 
 
 CLASSVARIABLES 
 ENDCLASSVARIABLES 
ENDCLASS 
 

Figure 30: TotalOrderingConstrainedMemorylessLearner class. 
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The constrained memoryless version is the most psychologically feasible of the total 

ordering learners. It does not assume infinite memory for input sentences and 

realistically constrains the number of parses per input sentence; it is limited to a 

maximum of two parses per input sentence: One parse to test the current input 

sentence and another parse to test a candidate hypothesis. Most of the lattice learners 

were designed to be psychologically feasible with regards to memory and 

computation. Gold’s learner in its original form is infeasible in both respects. All the 

lattice learners, except the LL-Optimal learner, respect the two parse per sentence 

PROCEDURE 
TotalOrderingConstrainedMemorylessLearner::PickNextHypothesis() 
 
DECLARE Sentence, CandGrammID; 
 
/* Sentence:  The current input sentence. 
 CandGrammID: A candidate grammar hypothesis. The learner 
    is entertaining the idea of making this  
    grammar the next hypothesis. */ 
 
Sentence  Environment.GetAnInput(); 
 
IF Licensed(HypoGrammID, Sentence) 
 THEN RETURN; 
ENDIF; 
 
CandGrammID  MoveToNextGrammarHypothesis(); 
 
IF Licensed(CandGrammID, Sentence) 

THEN HypoGrammID  CandGrammID; 
 RETURN; 

ENDIF; 
 
HypoGrammID  MoveToNextGrammarHypothesis(); 
 
ENDPROCEDURE; 
 

Figure 31: Constrained Memoryless Total Ordering learner algorithm. 
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limit. By constraining Gold’s learner similarly to the constraints we placed on our 

lattice learners, we are able to fairly compare the efficiency of both types of learners. 

 

3.6 Discussion and Results 

 

Learner Avg 
Sentences 

Avg 99% 
for 

Sentences 

Avg 
Parses 

Avg 99% 
for Parses 

Gold’s Total Ordering 15.63 52.00 1799.31 2635.65

Total Ordering Memoryless 22.26 62.38 1549.37 1589.49

Total Ordering Constrained 
Memoryless 

902.80 964.36 1669.82 1731.67

SP Lattice 858.69 1453.63 1588.99 2643.41

LL Optimal 15.55 58.58 434.55 813.97

Integrated 140.43 286.24 140.43 286.24

Retrench 188.17 696.75 585.83 2134.15

Table 4: Comparision of Total Ordering and Lattice learners 

 

3.6.1 Total Ordering Learner Inefficient In Terms of Parses 

 

The Total Ordering learner (Gold’s version) consumed almost exactly the same 

number of sentences on average as the SP Lattice LL Optimal learner (LL Optimal 

learner) before acquiring the target. As expected these learners yielded the best 

performance in terms of the number of input sentences. These learners needed 
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approximately 16 sentences on average to converge on the target. The memoryless 

version of the Total Ordering learner performed almost as well using approximately 

22 sentences on average. Although performance of these learners is impressive, these 

results must be taken with a grain of salt because both the Total Ordering learner and 

the LL Optimal learner are psychologically infeasible due to the lack of constraints on 

the number of parses per input sentence. This psychological infeasibility is due to the 

excessive amount of parallel parsing25 that these learners engage in. In the case of the 

LL Optimal learner, massive chunks of the search space are pruned off given the right 

input. Likewise, the Total Ordering learner can move through large sections of the 

enumeration on only one input sentence. This would be the case if an input sentence 

was unambiguous with respect to the target language and that target language was 

deep in the enumeration. The Total Ordering learner moves through multiple 

languages in the enumeration without requiring new input sentences. Note that the 

input sentence does not need to be completely unambiguous to move through large 

sections of the search space. For example, if the first input sentence was a member of 

10 languages (assuming the CoLAG domain of 3072 languages) and those 10 

languages were located somewhere in the final 1000 languages of the enumeration 

then the Total Ordering learner could move through the first 2072 languages of the 

search space using only that first input sentence. Of course, there is work going on 

even though unaccounted for in terms of the number of input sentences required by 

the learner. In order for the learner to adopt a new hypothesis in the enumeration, a 

parse is executed for each intervening grammar between that hypothesis and the 

                                                 
25 Technically this parallelism could be replaced with a sequence of distinct serial parses, but either 
way the amount of computational cost is most probably beyond what is psychologically feasible. 
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current hypothesis. This implies that there is at least one parse performed for each and 

every language in the enumeration up to the target language. Now assume the target 

language is located at the end of the enumeration and the first input sentence is 

unambiguous with respect to that language. The Total Ordering learner will move 

through the whole enumeration on that single input sentence. The results of that trial 

in terms of number of input sentences consumed is not at all indicative of the amount 

of "work" that the learner performed. On the surface one input sentence is an 

extremely efficient result. In reality, what happened was the Total Ordering learner 

performed an exhaustive search of the language domain; the learner had to parse the 

input sentence using the grammars of every language in the domain. It did not adopt 

every language on the way to the target language, but it considered every one. In this 

example, although the cost in terms of number of inputs is 1, the cost in terms of the 

number of parses is 3072.  

 

The number of sentences could also overestimate the amount of work being done by 

the learner. For example, suppose the target language is located near the beginning of 

the enumeration, say 20th position. Also suppose that the stream of input sentences 

presented to the learner caused it to hypothesize each of the 19 languages located in 

front of the target language in the enumeration. That is, each input allowed the learner 

to move only one grammar forward. The cost in terms of sentences and parses is 20. 

Now compare the Total Ordering learner efficiency for this example against the 

previous example, which had the target language at the end of the enumeration. In 

terms of the number of input sentences, it took the learner much less time to acquire 
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the target language located at the end of the enumeration than it took the learner to 

acquire the language at the beginning of the enumeration. It appears that it is easier 

for the learner to acquire the language at the end of the enumeration. Of course this is 

misleading. The number of parses gives a better indication of the work done by the 

learner to acquire the target language. It took the total ordering learner 3072 parses to 

acquire the language at the end of the enumeration and only 20 to acquire the 

language at the beginning. This gives a more accurate representation of the effort put 

forth by the learner. We can now see that it took more work for the total ordering 

learner to acquire the language at the end of the enumeration than the language at the 

beginning.  

 

The Total Ordering learner employs memory for past input sentences. During 

learning, the computational cost of using this memory is unaccounted for when using 

the number of input sentences as a metric. For each input sentence the Total Ordering 

learner parses the current input and all previous inputs encountered up until that point. 

For example, the computational cost to the Total Ordering learner in order to process 

the first ten input sentences is 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 parses. The 

number of parses is a good indication of the work performed by the learner due to 

memory for past sentences when faced with ambiguous input. Unlike the previous 

examples, suppose the total ordering learner is exposed to a string of ambiguous input 

sentences such as those depicted in Figure 32.  
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Figure 32: Language domain with ambiguous input sentences. 

 

The input sentence memory store gives the Total Ordering learner a large advantage 

when exposed to this type of input. If each sentence were taken individually without 

memory, it might be hard for the learner to move through the enumeration towards 

the target language. The Total Ordering might hypothesize languages in the order 

shown. The sentences are ambiguous and they could easily be members of multiple 

non-target languages. The high ambiguity of these input sentences impedes 

movement through the enumeration toward the target language. Collecting input 

sentences and using the grammar associated with the current hypothesis to parse each 

member of the collection each time a new input sentence is encountered greatly 

increases the chances of disconfirming an invalid hypothesis. Now all input sentences 

must be members of the current hypothesis language in order for that language to be 

retained as the current hypothesis. The chances of disconfirming invalid hypotheses 

are greater because of the sentence memory store. For the example given in Figure 
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32, the Total Ordering learner would be forced to give up hypothesis 3 after the third 

input sentence was encountered. Importantly, the learner would also be compelled to 

hypothesize the target next because no other language contains all three input 

sentences. The input sentence memory store for the Gold learner increases learner 

efficiency in terms of the number of input sentences but it decreases learner 

efficiency in terms of the number of parses.  

 

The Total Ordering learner performed the worst in terms of parses of all the learners 

being compared in this chapter. The input sentence memory store for the Gold learner 

turns out to be very expensive in terms of the number of parses. Each time a new 

input sentence is encountered that sentence and all of the sentences in the memory 

store must be parsed against the current hypothesis grammar. Consequently, the 

computational cost in terms of the number of parses will greatly increase as sentences 

are added to the memory store. Importantly, a major difficulty for the Total Ordering 

learner is the fact that it must necessarily parse every single grammar in the 

enumeration that is located before the target grammar. Even if a grammar is safe to 

skip over in terms of SP it must still be checked against all input sentences 

encountered to this point. These extra checks add to the computational cost. In 

contrast, the lattice learners have an advantage over the Total Ordering learners 

because they are only required to check languages that are supersets and/or subsets of 

candidate hypothesis languages. Unlike the Total Ordering learners, they are not 

required to check any languages that are not in a subset-superset relationship. This 



 110

freedom is what separates the lattice learners from the total ordering learners in terms 

of the number of parses. 

 

3.6.2 Effects of Removing Total Ordering Input Sentence Memory Store 

 

The Total Ordering Memoryless learner (Memoryless learner) is a modification of the 

Gold learner such that the input sentence memory store has been removed. The 

Memoryless learner does not test each input sentence encountered so far against a 

candidate hypothesis grammar and that results in less parses being needed for each 

individual input sentence. However, more sentences will probably be needed to 

disconfirm a false current hypothesis. The need for more input sentences will cause 

an increase in the number of parses and some of the efficiency gains realized by 

excessive parsing of each new grammar will be reduced. Results showed that the 

memoryless version outperforms Gold’s version by approximately 250 parses on 

average. The additional parsing load caused by memory for past input sentences 

would seem to account for the difference in parsing efficiency of the two learners. 

The memory store is a double-edged sword. On the one hand the additional sentences 

make it easier to disconfirm false hypotheses but on the other they make it more 

computationally costly due to having to parse each individual input sentence. As the 

number of stored sentences increases, the cost of testing a new grammar hypothesis 

also increases. Adding new sentences to the memory store may have diminishing 

returns after a certain point. In practice, only a few sentences stored in memory may 

be necessary to greatly increase the ability of the learner to disconfirm false 
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hypotheses. If the size of the memory store were limited the learner may realize 

performance gains in terms of speedier disconfirmation of false grammar hypotheses 

without the burden of parsing every single input sentence for every single grammar 

hypothesis. Limiting the memory will mean less parses for a given input sentence but 

the learner will still benefit from extra input sentences during disconfirmation of a 

current hypothesis. Figure 32 (from section 3.6.1 Total Ordering Learner Inefficient 

In Terms of Parses) gives an example of a language domain where memory for only 

three input sentences would be necessary to see an increase in learner efficiency. 

 

Performance of the Memoryless learner was only slightly worse than the Total 

Ordering learner in terms of the number of input sentences. The removal of the 

memory store only slightly affected performance. The Memoryless learner was still 

free to move through the enumeration as far as it could and so the number of input 

sentences remained very low. In domains with a higher level of ambiguity the 

difference in performance between these two learners would probably be more 

pronounced. 

 

3.6.3 Constraining Total Ordering Learner Affects Performance 

 

The Total Ordering Constrained Memoryless learner (Constrained Memoryless 

learner) was modified such that it is limited to two parses per input sentence. 

Constraining the Total Ordering learner in this manner creates a situation where the 

lattice learners and the total ordering learner can now be compared fairly. It would be 
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unjust to compare the learners when one is allowed unlimited parses for each input 

sentence and the other is not. Results showed that when using the number of input 

sentences as the measure of efficiency the Constrained Memoryless learner was 

slightly worse than the SP Lattice learner (Lattice learner). The parsing constraint 

forces the Constrained Memoryless learner to use more sentences in order to 

converge on the target. Gold’s unconstrained version of the total ordering learner 

allows it to traverse the whole enumeration with only one input sentence since there is 

no constraint on the number of parses per input sentence.  

 

Allowing the Total Ordering learner to move through the whole enumeration without 

regard for the number of parses is psychologically infeasible. Constraining the Total 

Ordering learner now makes its performance comparable to the Lattice learner’s in 

terms of the number of input sentences. 26  

 

3.6.4 Partial Ordering More Efficient Than Total Ordering 

 

The SP Lattice Integrated learner (Integrated learner) performed best of all the 

learners. The Integrated learner required only 140 parses on average as compared to 

the best total ordering learner that required 1549 parses on average. The Integrated 

learner was more than ten times faster than the best total ordering learner in terms of 

                                                 
26 There was no constrained version of the Total Ordering learner (Gold’s version with a memory 
store) because it would not have made sense since that learner must parse every input sentence in the 
memory store. The learner would have only been allowed to parse one sentence from the memory store 
and that would have had to be chosen at random. We could have removed the memory store 
completely and allowed only one parse for the current input sentence but that would have created an 
unfair comparison with the lattice learners which were allowed two parses per input sentence. 
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the number of parses. Importantly, the Integrated learner is a psychologically feasible 

model of first language acquisition and it was still able to outperform all of the total 

ordering learners regardless of their psychological feasibility. The ability of the 

Integrated learner to move about freely in the search space as compared to the total 

ordering learner allows it to skip portions of the search space that the total ordering 

learners cannot skip. The Integrated learner is able to outperform the total ordering 

learners in terms of the number of parses because of the flexibility it has to move 

around the search space and because of its ability to take full advantage of that 

flexibility. In contrast to the total ordering learners, the Integrated learner is able to 

focus on hypothesizing only the languages which are absolutely essential for it to 

disconfirm in order to ensure that SP is obeyed. It does not waste time hypothesizing 

languages that have absolutely nothing to do with the target grammar. This is the 

Achilles heel of the enumeration learners. The decoding process that the Integrated 

learner uses will only allow it to hypothesize grammars that are subsets of the target 

language (in the case that one exists in the SL set). Only the languages that are 

absolutely necessary to hypothesize are in fact hypothesized. The learner moves 

directly to the relevant areas of the search space. This is in contrast to the total 

ordering learners, which can spend time hypothesizing languages that are not subsets 

of the target and which may not even have any sentences in common with the target 

language. The total ordering learners are bound to examining the search space in a 

specific order for every single trial, no matter what evidence is presented to the 

learner. This rigid approach to navigating the search space will cause the 

computational cost in terms of the number of parses to have a lower bound of half the 
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size of the language domain on average. Utilization of a partial ordering as opposed 

to a total ordering frees the Integrated learner to search only the parts of the search 

space that are absolutely necessary to ensure that SP is being obeyed. 
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4 Effects of Language Domain Shape on Learning 
 

The research discussed in this thesis thus far has focused on how different learning 

models operate in the CoLAG domain. The independent variable has been the type of 

learner used to model first language acquisition. We have investigated how each 

learner performs and what characteristics of each model contribute to their respective 

performances. This chapter will now turn to the question of how the shape of the 

language domain affects learner performance. We will approach this problem from 

two directions. First, we investigate learner performance across varying language 

domain shapes. Second, we will examine which learners performed best given a 

language domain shape. The language domains constructed for these simulations can 

be divided into two categories: subset language domains and properly intersecting 

language domains. The subset language domains contain languages that have subsets 

and/or supersets. The language domains in this category will vary according to their 

subset-superset relationships. The properly intersecting language domains do not have 

any pairs of languages that have subset-superset relationships. These language 

domains will vary according to the amount of unambiguous triggers that each 

language in the domain has. All languages within a given properly intersecting 

language domain will have the same amount of unambiguous triggers. 
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4.1 Why Examine Language Domain Shape? 

Frequently, psychocomputational modeling of first language acquisition focuses on 

creating different models and examining how each of these models performs. One 

artificial language domain is posited and agents embodying one psycholinguistic 

acquisition theory or another attempt to converge on the languages in that domain. 

The existence of subset-superset relationships in a language domain adds more 

complexity to the problem of creating efficient models of first language acquisition. If 

subset-superset relationships do exist in the domain of natural human languages, then 

the question arises as to how best to shape the language domain for a 

psychocomputational modeling endeavor. What percentage of languages should have 

subsets? How many levels of subsets are there? Is the overall shape of the partial 

ordering of languages “taller” or “wider”? How much sentence overlap is there 

between languages in the domain? It is clear that learning performance can vary 

tremendously between different domains (e.g., Sakas 2000a, Sakas and Fodor 2001). 

The goal of the research presented in the chapter is to examine how language domain 

shape affects the learning performance of learners that obey the Subset Principle. 

 

4.2 Tall Vs. Wide Lattices 

 

The subset language domains we will be investigating can be grouped into two main 

categories, tall and wide. A tall lattice has most languages positioned on long vertical 

lines. If a tall lattice were viewed as a Venn diagram it would look like overlapping 
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onions each with many layers. A wide lattice has most languages positioned next to 

each other horizontally. There is very little deep nesting of languages in a wide 

lattice. 

 

4.3 Domain Ambiguity Within The Language Domains 

 

The ambiguity of sentences in the domain importantly contributes to its shape. The 

language domains were set up such that each language has one subset-free trigger or 

one unambiguous trigger. Languages at the top of the lattice will have at least one 

unambiguous trigger while languages that are not at the top of the lattice will have at 

least one subset-free trigger. The percentage of subset-free triggers and unambiguous 

triggers will vary by language and language domain shape. Within the subset 

language domains the percentage of subset-free triggers that a language has will 

depend on the number of subsets that the language has. If a language has a total of 49 

subsets then it will have a total of 50 sentences resulting in only two percent of the 

sentences being subset-free triggers. On the other hand, if a language has one subset 

then it will have a total of two sentences giving a subset-free trigger percentage of 50 

percent. Within the subset language domains only those languages at the top of any 

lattice will have unambiguous triggers. The properly intersecting language domains 

do not contain any languages in subset-superset relationships so languages in those 

domains will all have at least one unambiguous trigger. For the properly intersecting 

language domains, the percentage of unambiguous triggers will be dependent on the 

overlap of languages in the given domain.  
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4.4 Subset Language Domains 

 

4.4.1 Description of Subset Language Domains 

 

There are a total of 100 languages in each of the subset language domains. The subset 

language domains are constructed such that each language in each domain is in a 

subset-superset relationship with at least one other language in that domain. There are 

no properly intersecting languages in the subset language domains. The distribution 

of sentences is such that each language in each domain has one subset-free-trigger. 

Seven different language domains were created: 5-45-45-5, Skewed, 10 x 10, 50 x 2, 

25 x 4, 4 x 25, and 2 x 50. The domains were constructed so that they reflect different 

types of shapes. Each domain is setup by row. For example, the 25 x 4 language 

domain has 25 rows and 4 columns. Each language in a given row is in a subset-

superset relationship with each language in the row directly below it. In general, each 

row in a language domain is fully connected to the row directly below it.  

 

4.4.1.1 Language Domain Shape - 5-45-45-5 
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Figure 33: Language Domain Shape 5-45-45-5 Fully Connected 

 

The 5-45-45-5 language domain has 4 rows with a variable number of columns and is 

a wide shape. All of the languages in a row are direct supersets of the languages of 

the adjacent row below it and all languages below that row are indirect subsets of it. 

Languages in the top row of this lattice will have 95 subsets each. There are only 5 

languages in this domain that do not have any subsets. 
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4.4.1.2 Language Domain Shape - Skewed 

 

Figure 34: Language Domain Shape Skewed Fully Connected 

 

The Skewed language domain was designed to be tall with two main branches. One 

branch has 8 rows and 4 columns and the other has 16 rows and 4 columns. Within a 

branch, all of the languages in a row are direct supersets of the languages of the 

adjacent row below it and all languages below that row are indirect subsets of it. The 

top row of the lattice has all languages fully connected to the top of each branch. 

Languages in the top row of this lattice will have 96 subsets each. There are only 8 

languages in this domain that do not have any subsets. 
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4.4.1.3 Language Domain Shape – 10 x 10 

 

Figure 35: Language Domain Shape 10 x 10 Fully Connected 

 

The 10 x 10 language domain has 10 rows and 10 columns and was designed to be a 

middle ground between tall vs. wide. All of the languages in a row, say row A, are 

direct supersets of the languages of the adjacent row below it, say row B. The 

languages in the rows below row B are indirectly subsets of the languages in row A. 

Languages in the top row of the lattice will have 90 subsets each. There are 10 

languages in this domain which do not have any subsets. 

 

4.4.1.4 Language Domain Shape – 50 x 2 
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Figure 36: Language Domain Shape 50 x 2 Fully Connected 

 

The 50 x 2 language domain has 50 rows and 2 columns and is an extremely tall 

shape. Each row in the language domain is fully connected to the row above it and 

below it. The languages in the top row each have 98 subsets.  
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4.4.1.5 Language Domain Shape – 25 x 4 

 

Figure 37: Language Domain Shape 25 x 4 Fully Connected 

 

The 25 x 4 language domain has 25 rows and 4 columns and is a very tall shape. The 

goal of this design was to give the languages at the top of the lattice many layered 

languages to go through in order to acquire the target. Again, all of the languages in a 

row are direct supersets of the languages of the adjacent row below it and all 

languages below that row are indirect subsets of it. Languages in the top row of this 

lattice will have 96 subsets each. There are only 4 languages in this domain that do 

not have any subsets. 

 

4.4.1.6 Language Domain Shape – 4 x 25 
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Figure 38: Language Domain Shape 4 x 25 Fully Connected 

 

The 4 x 25 language domain has 4 rows and 25 columns and is a wide shape. All of 

the languages in a row are direct supersets of the languages of the adjacent row below 

it and direct subsets of the adjacent row above it. Languages in the top row of this 

lattice will have 75 subsets each.  

 

4.4.1.7 Language Domain Shape – 2 x 50 

 

Figure 39: Language Domain Shape 2 x 50 Fully Connected 

 



 125

The 2 x 50 language domain has 2 rows and 50 columns and is a very wide shape. As 

before all of the languages in a row are direct supersets of the languages of the 

adjacent row below it and all languages below that row are indirect subsets of it. 

Languages in the top row of this lattice will have 50 subsets each. Half of the 

languages in this domain do not have any subsets at all. 

 

4.4.2 Performance Across Subset Language Domains 

 

4.4.2.1 SP Lattice Learner Performance Across Language Domains 

 

Language 
Domain 

Avg Height Avg 
Sentences 

Avg 99% 
for 

Sentences 

Avg Parses Avg 99% 
for Parses 

5-45-45-5 1.50 310.74 703.01 336.22 736.85

Skewed 6.56 80.83 175.24 107.43 204.13

50x2 24.50 131.49 257.48 157.71 284.31

25x4 12.00 134.20 296.11 160.27 322.97

10x10 4.50 172.06 414.65 197.82 442.34

4x25 1.50 269.28 627.85 294.86 658.24

2x50 0.50 337.95 753.40 363.17 789.59

Table 5: SP Lattice learner results across language domains. 
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The relative performance of the SP Lattice learner on all five language domains was 

the same when using either sentences or parses as the measure of efficiency. The SP 

Lattice learner performed best for both sentences and parses on the Skewed language 

domain. The SP Lattice learner must eliminate all subsets of a given target language 

before it can hypothesize the target language. Most of the languages (96%) in the 

Skewed language domain are located in one of the two branches. The learner does not 

need to eliminate any languages from the other branch which reduces the number of 

languages that need to get eliminated on average for each language. For languages in 

either branch of the Skewed language domain the worst location for a target language 

would be at the top of the branch containing the 16 rows. Languages at the top of that 

branch have 60 subsets each (15 rows x 4 columns = 60 subsets). Contrast this with 

the languages at the top of the 25x4 language domain. Languages at the top of the 

25x4 language domain have 96 subsets each (24 rows x 4 columns = 96 subsets). 

There are more languages that need to be eliminated on average in the 25x4 language 

domain as compared to the Skewed language domain. Each branch of the Skewed 

language domain is isolated from the other branch. This results in fewer subsets that 

need to be eliminated for languages located in either branch of the Skewed language 

domain. 
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4.4.2.2 Retrench Learner Results 

 

Language 
Domain 

Avg Height Avg 
Sentences 

Avg 99% 
for 

Sentences 

Avg Parses Avg 99% 
for Parses 

5-45-45-5 1.50 30.51 111.36 796.63 2836.28

Skewed 6.56 28.55 99.04 108.81 328.36

50x2 24.50 49.22 177.50 131.61 335.20

25x4 12.00 48.77 175.99 131.14 372.90

10x10 4.50 46.42 172.94 228.80 745.87

4x25 1.50 38.88 139.46 638.04 2243.80

2x50 0.50 26.21 93.63 705.93 2495.01

Table 6: Retrench learner results across language domains. 

 

For parses, the Retrench learner did best on taller as opposed to wider lattices (see 

Table 6). In order for the Retrench learner to safely hypothesize a given language it is 

necessary for it to hypothesize every immediate subset of that given language. For 

example, each language in the top row of the 2x50 language domain requires the 

learner to check all 50 subsets before the learner can safely hypothesize it. There is a 

lower bound of 50 parses for each language in the top row of the 2x50 language 

domain. Similarly, each language in the top row of the 5-45-45-5 language domain 

has a lower bound of 45 before each can be safely hypothesized. Retrench learner 

efficiency is worse for the 5-45-45-5 language domain because neither of the 45 wide 
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rows is at the bottom of the lattice. This causes a big problem for the five languages 

located in the top row of the lattice.  

 

Location In Lattice Sents Avg Parses Avg 

Top Row of 5 95.32 3013.31 

Upper Row of 45 51.19 1382.72 

Lower Row of 45 5.94 52.25 

Bottom Row of 5 0.80 4.52 

Table 7: Retrench learner results with languages grouped by row for the 5-45-45-5 
language domain. 

 

The results in Table 7 show that languages in the top row of the 5-45-45-5 language 

domain are very hard for the Retrench learner to acquire. The Retrench learner’s 

efficiency suffers due to the large width of the two middle rows of the lattice. For 

example, suppose the target language is located in the top row of 5 languages, call it 

language A. Language A has 95 ambiguous sentences and only one unambiguous 

sentence. Of the 95 ambiguous sentences, 45 of them represent subset-free triggers 

for languages in the upper row of 45. Another 45 represent subset-free triggers for 

languages in the bottom row of 45. And finally, 5 of them represent subset-free 

triggers for languages in the bottom row of 5 languages. Now suppose the learner is 

presented with an input sentence that is a subset-free trigger for one of the languages 

in the upper row of 45 languages, call it language B. The learner will be required to 

parse the input sentence with all 45 of language B’s direct subsets before it can safely 

hypothesize language B. None of the other grammars in the upper row of 45 succeed 
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in parsing the current input sentence and the learner will be free to hypothesize 

language B. The learner has just performed 45 parses on one input sentence and 

settled on hypothesizing language B and it is not even the target language. When 

trying to acquire language A, 47% (45 subset-free triggers from upper row of forty-

five/96 total sentences in language A) of the sentences available to the learner will 

cause this scenario to happen. Another 52% (50 sentences in bottom two rows/96 

total sentences) of the sentences, which are comprised of the subset-free triggers in 

the bottom two rows, will force the learner to hypothesize a language other than the 

target language. The computational cost required by the Retrench learner to 

hypothesize languages in one of the bottom two rows is small when compared to 

languages in the upper row of 45. The problem with hypothesizing languages in the 

bottom two rows is that they are not the target language (in this example) and the 

learner will be required to get another input sentence from the learning environment. 

The next input sentence will again have a 47% chance of being a subset-free trigger 

of language B or one of the other languages on the upper row of 45. The Retrench 

learner will spend a large amount of time in the bottom 95% of this particular lattice 

structure. 

 

For sentences, the Retrench learner performed best on the 2x50 language domain. 

This is in contrast to the poor learner efficiency which resulted when parses were 

used as the metric. When the number of sentences is used to determine learner 

efficiency all parsing cost can be ignored. The large performance cost incurred as a 

result of parsing subsets of the target is not factored into the sentence performance 
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measure. There is also a better chance of selecting a subset-free trigger of the target 

language when using the 2x50 language domain as opposed to the 25x4 language 

domain. For the 2x50 language domain, the average percentage of subset-free triggers 

for all languages in the domain is 51 percent ((1/51 + 1/1) / 2). For the 25x4 language 

domain, the average percentage of subset-free triggers for all languages is only 7 

percent ((1/97+1/93+…+1/4+1/1)/25). The Retrench learner requires subset-free 

triggers in order to hypothesize the target and it will encounter a higher percentage of 

subset-free triggers when learning in the 2x50 language domain as opposed to the 

25x4 language domain. 

 

The Retrench learner performs dramatically better on taller lattices when using parses 

as the metric and better on wider lattices when using sentences as the metric. The cost 

of parsing direct subsets in a wide lattice seems to outweigh the cost of deep 

retrenchment that may occur in tall lattices.  
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4.4.2.3 Total Ordering Learner Results 

 

Language 
Domain 

Avg Height Avg 
Sentences 

Avg 99% 
for 

Sentences 

Avg Parses Avg 99% 
for Parses 

5-45-45-5 1.50 28.85 106.12 637.79 2261.31

Skewed 6.56 24.22 88.27 161.02 382.52

50x2 24.50 41.67 141.17 263.85 599.02

25x4 12.00 42.14 154.65 280.96 673.91

10x10 4.50 41.40 145.52 354.43 1021.84

4x25 1.50 36.46 134.51 549.37 1868.82

2x50 0.50 25.14 88.29 676.50 2354.64

Table 8: Total Order learner results across language domains. 

 

The Total Ordering learner also performed best on the Skewed language domain. The 

reason for this may be because the Skewed language domain has a lower average 

number of subsets compared to most of the other language domains. The main 

problem for the Total Ordering learner may be coming from its inability to disconfirm 

incorrect hypotheses. Figure 40 shows an example of a target language that is hard for 

the Total Ordering learner to acquire.  
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Figure 40: Target language that is hard for the Total Ordering learner to acquire. 

 

In this example, the target language and two possible hypothesis languages are 

shown. Both the subset hypothesis and the properly intersecting hypothesis will be 

hard for the Total Ordering learner to give up because they both overlap with the 

target language to a large degree. The properly intersecting languages are a concern 

for the Total Ordering learner because those languages have to be considered as 

hypotheses when they appear before the target in the enumeration. In contrast, the SP 

Lattice learner is not required to consider the properly intersecting languages, 

therefore it is not as affected by them as the Total Ordering learner is. 

 

Wider language domains with many subset-superset relationships will cause this 

problem to occur for the Total Ordering more than taller language domains. The 2x50 

language domain is particularly hard for the Total Ordering learner because the 
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languages in the top row are all properly intersecting and have a large amount of 

overlap between them.  

 

4.4.2.4 Total Ordering Constrained Memoryless Learner Results 

 

Language 
Domain 

Avg Height Avg 
Sentences 

Avg 99% 
for 

Sentences 

Avg Parses Avg 99% 
for Parses 

5-45-45-5 1.50 313.53 502.08 339.02 527.59

Skewed 6.56 77.01 145.70 102.82 171.68

50x2 24.50 132.66 255.07 158.89 281.58

25x4 12.00 134.64 255.33 160.71 281.68

10x10 4.50 172.36 339.15 198.12 365.06

4x25 1.50 270.48 475.19 296.08 500.72

2x50 0.50 337.01 521.37 362.22 546.59

Table 9: Total Ordering Constrained Memoryless learner results across language 
domains. 

 

The performance of the Total Ordering Constrained Memoryless learner was similar 

to the other learners. Again, the Skewed language domain was easiest to learn while 

the 2x50 language domain was the hardest. This learner encountered problems similar 

to those seen in the Total Ordering learner.  
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4.4.2.5 SP Lattice Flashlight Learner Results 

 

Language 
Domain 

Avg Height Avg 
Sentences 

Avg 99% 
for 

Sentences 

Avg Parses Avg 99% 
for Parses 

5-45-45-5 1.50 311.01 519.95 336.50 546.21

Skewed 6.56 76.23 161.09 101.86 188.21

50x2 24.50 131.54 258.93 157.54 285.61

25x4 12.00 134.23 295.90 160.30 322.69

10x10 4.50 171.62 373.97 197.38 400.86

4x25 1.50 268.46 499.82 294.07 526.75

2x50 0.50 336.50 541.61 361.71 568.45

Table 10: SP Lattice Flashlight learner results across language domains. 

 

The SP Lattice Flashlight learner also performed best on the Skewed language 

domain and worst on the 2x50 language domain. The results were similar to the other 

learners. 
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4.4.2.6 Discussion 

 

In terms of the number of parses, all of the learners had almost the same relative order 

of performance for all of the language domains (see Table 11). 

 

 SP Lattice Retrench Total 
Ordering 

Total 
Ordering 

Constrained 

Flashlight 

1 Skewed Skewed Skewed Skewed Skewed 

2 50x2 25x4 50x2 50x2 50x2 

3 25x4 50x2 25x4 25x4 25x4 

4 10x10 10x10 10x10 10x10 10x10 

5 4x25 4x25 4x25 4x25 4x25 

6 5,45,45,45 2x50 5,45,45,45 5,45,45,45 5,45,45,45 

7 2x50 5,45,45,45 2x50 2x50 2x50 

Table 11: Relative performance of learners on language domains in terms of the 
number of parses (fastest (1) to slowest (7)). 

 

Table 11 illustrates which language domains were easiest and hardest to learn for 

each learner under investigation. For example, the SP Lattice learner performed best 

on the Skewed language domain and worst on the 2x50 language domain. Overall, the 

very wide language domains were the hardest to learn while the taller language 

domains were easier. Why might this be so? On the surface it would seem that 

language domains with a lower average number of subsets per language would be 

easier to learn but interestingly this was not the case (see Table 12). 
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Language Domain Shape Average Number of Subsets Per 
Language 

50x2 49.0 

25x4 48.0 

10x10 45.0 

4x25 37.5 

5-45-45-5 30.0 

Skewed 28.0 

2x50 25.0 

Table 12: Average number of subsets per language by language domain. 

 

The Skewed language domain was the easiest to learn while the 2x50 language 

domain was the hardest yet they both had roughly the same average number of 

subsets per language. The shape of the language domain was the main reason for the 

difference in performance. Why is the 2x50 language domain so hard to learn for all 

of the learners? For this language domain there is a great disparity in the learning 

times for languages in the top row as compared to languages in the bottom row across 

all of the learners (see Table 13). 
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 SP Lattice Retrench Total 
Ordering 

Total 
Ordering 

Constrained 

Flashlight 

Top 
Row 

701.56 1385.21 1327.52 699.43 698.36

Bottom 
Row 

24.78 26.65 25.48 25.00 25.06

Table 13: Average number of parses for languages in either the top or bottom row of 
the 2x50 language domain. 

 

The wide shape of this language domain caused problems for all of the learners under 

investigation. For languages in the top row, there are many subsets that need to be 

either hypothesized or at least evaluated as well as lots of properly intersecting 

languages that can be hard to disconfirm. These factors impacted all of the learners 

although the degree to which either of these factors impacted a given learner varied. 

 

4.5 Properly Intersecting Language Domains 

 

This section will examine how domain ambiguity affects learner performance. The 

language domains under investigation in this section do not have any languages in 

subset-superset relationships. High ambiguity language domains contain very few 

unambiguous sentences. Figure 41 gives an example of a highly ambiguous language 

domain. 
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Figure 41: Language domain with high domain ambiguity. 

 

Most of the sentences of each language in Figure 41 belong to at least one other 

language in the domain. Sentences S7 through S10 belong to every language of the 

domain and provide very little information that the learner can use to determine the 

target language. Sentences S4 through S5 are not members of every language but they 

are still ambiguous. They may contain some information that the learner can use. 

Sentences S1 through S3 are unambiguous with respect to the languages they belong 

to and should provide the learner with the most information. Figure 42 gives an 

example of a language domain with low domain ambiguity. 
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Figure 42: Language domain with low domain ambiguity. 

 

Most of the sentences in this language domain are unambiguous. Only sentence S10 

belongs to more than one language. In this section several learners will be run on 

language domains containing varying amounts of domain ambiguity in order to 

investigate the effects of domain ambiguity on learner efficiency. 

  

4.5.1 Description of Properly Intersecting Language Domains 

 

Each of the properly intersecting language domains contains 100 languages. These 

language domains will vary according to the average percentage of unambiguous 

sentences for languages in the domain. For example, the average percentage of 

unambiguous sentences for the languages depicted in Figure 41 is 14%. Each 

language in the domain contains seven sentences, only one of which is unambiguous 
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(1/7 = .14 = 14%). The average percentage of unambiguous sentences for the 

language domain given in Figure 42 is 75% (3/4 = .75 = 75%). Each language in the 

domain contains four sentences, three of which are unambiguous. A language domain 

with a high average percentage of unambiguous sentences means that most of the 

sentences in a given language belong only to that language. Language domains with 

low average percentages of unambiguous sentences contain languages with many 

sentences that are members of more than one language. 

 

4.5.2 Learner Performance On Properly Intersecting Language Domains 

 

In Table 14 through Table 18, we give results for each learner on each of the properly 

intersecting language domains.  

 

Pct Of 
Unambiguous 

Sentences 

Avg Sentences Avg 99% for 
Sentences 

Avg Parses Avg 99% for 
Parses 

4% 160.47 474.07 190.00 519.55

12% 39.52 86.91 65.60 135.52

34% 27.33 54.17 52.79 103.07

51% 25.67 50.21 50.74 98.92

84% 25.06 48.70 50.06 97.28

99% 25.16 48.49 50.32 96.98

Table 14: SP Lattice learner results across properly intersecting language domains. 
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Pct Of 
Unambiguous 

Sentences 

Avg Sentences Avg 99% for 
Sentences 

Avg Parses Avg 99% for 
Parses 

4% 87.45 405.51 96.98 428.09

12% 9.84 40.20 13.13 48.26

34% 2.62 8.93 4.51 13.55

51% 1.69 4.90 3.15 8.13

84% 1.09 2.13 2.17 4.12

99% 1.00 1.00 1.98 2.00

Table 15: Retrench learner results across properly intersecting language domains. 

 

 

Pct Of 
Unambiguous 

Sentences 

Avg Sentences Avg 99% for 
Sentences 

Avg Parses Avg 99% for 
Parses 

4% 15.48 45.68 126.27 224.00

12% 4.65 12.44 67.17 95.46

34% 2.03 4.80 54.19 63.36

51% 1.48 2.94 51.91 56.13

84% 1.08 1.62 50.69 51.90

99% 1.00 1.00 50.49 50.49

Table 16: Total Ordering learner results across properly intersecting language 
domains. 
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Pct Of 
Unambiguous 

Sentences 

Avg Sentences Avg 99% for 
Sentences 

Avg Parses Avg 99% for 
Parses 

4% 78.59 121.20 108.18 151.12

12% 36.05 47.04 62.37 73.59

34% 27.15 30.83 52.59 56.67

51% 25.74 27.57 50.93 53.06

84% 25.09 25.57 50.11 50.73

99% 25.00 25.00 50.00 50.00

Table 17: Total Ordering Constrained Memoryless learner results across properly 
intersecting language domains. 

 

 

Pct Of 
Unambiguous 

Sentences 

Avg Sentences Avg 99% for 
Sentences 

Avg Parses Avg 99% for 
Parses 

4% 83.81 159.65 113.26 190.59

12% 36.28 50.41 62.60 78.54

34% 27.12 32.37 52.51 60.14

51% 25.72 29.34 50.89 57.03

84% 25.11 27.76 50.15 55.34

99% 24.98 27.53 49.97 55.06

Table 18: SP Lattice Flashlight learner results across properly intersecting language 
domains. 
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For every learner, learner efficiency was better for language domains with a higher 

percentage of unambiguous sentences and worse for language domains with a lower 

percentage of unambiguous sentences. Incremental changes in unambiguous sentence 

percentage affect learner efficiency more for low percentages. For each learner, the 

largest difference in computational efficiency for all metrics occurred between the 

language domains containing 4% unambiguous sentences and 12% unambiguous 

sentences. Increasing the percentage of unambiguous sentences past 34% did not 

significantly impact learner performance for the learners under investigation. It would 

seem that learners greatly benefit from increases in the percentage of unambiguous 

sentences to a point. There are diminishing returns for increases in the average 

number of unambiguous sentences past 34%. A percentage of 34% means that at least 

one-third of the sentences encountered by the learner will be unambiguous. The 

learner will quickly disconfirm incorrect hypotheses due to the unambiguous input 

and quickly move through the search space towards the target language.  

 

4.6 Discussion 

 

This preliminary investigation into the effects of language domain shape on SP-

learner efficiency seems to indicate that the shape of the language domain does have 

an effect. Why does it have an effect? In some aspects, the shape of the language 

domain affects domain ambiguity. If a language has many subsets then the language 

necessarily overlaps those subset languages resulting in domain ambiguity. We have 

shown that domain ambiguity affects SP-learner performance therefore it is logical to 
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conclude that shape will affect learner performance as well. More importantly, our 

learners are required to abide by the Subset Principle. Faithful application of the 

Subset Principle is what makes language domain shape an issue. The Subset Principle 

forces learners to make safe hypothesis selections with respect to superset errors. For 

example, the Retrench learner (see section 2.3.8 Retrench Learner) must check all of 

a language’s direct subsets before it can safely hypothesize that language. If a 

language has many direct subsets then the Retrench learner will necessarily be doing 

a lot of parsing in the name of the Subset Principle. On the other hand, if that 

language has many subsets but most of those subsets are indirect then it will not have 

to do as much parsing to hypothesize that language. In Figure 43, language A is hard 

for the Retrench learner to hypothesize because it must check all 6 subsets before it 

can safely hypothesize it. 

 

 

Figure 43: Language shape that is hard for the Retrench learner. 

 

 

In Figure 44, language A is easier for the Retrench learner to hypothesize because it 

does not need to check all 6 subsets. It only has to check its two direct subsets. 
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Figure 44: Language shape that is easy for the Retrench learner. 

 

Domain ambiguity gives an indication of how hard it may be to learn a language 

domain but it does not give the full picture. There are subset-superset dependencies 

that must be considered in order to abide by SP. The shape of the language domain 

will directly affect the computational cost of SP compliance. Depending on the 

learner, the effects of language domain shape could be offset somewhat by the 

distribution of subset-free triggers and unambiguous triggers in the language domain 

although the shape will force lower bounds on computational cost no matter what the 

distribution of subset-free triggers and unambiguous triggers happens to be.  

 

Overall, the current research indicates that language domains containing more breadth 

are harder to learn than language domains containing more depth. When abiding by 

the Subset Principle the learner is better off navigating a language domain containing 

vertical chains of subset/supersets as opposed to horizontal ones. It should be noted 

that this result does not take into account the connectedness of the language domain. 
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The current research was done using language domains that have a high degree of 

connectivity.  

 

This research is only a first step in examining the effects of language domain shape 

on learner efficiency. There are many variables related to language domain shape that 

should be manipulated and evaluated in order to provide a more complete analysis. 

For example, the shapes of the language domains presently under investigation 

contain a high degree of connectedness. Each language in each row is a superset of 

each language in the row below it except in the case of the Skewed language domain. 

Interestingly, the Skewed language domain was the easiest to learn of all the language 

domains. The Skewed language domain forces a natural break in the domain, 

reducing the overall connectivity. Language domains that vary according to this type 

of connectivity should be investigated. Another variable that should be analyzed is 

domain ambiguity within the subset-superset language domains. Language domains 

should be created that vary the amounts of subset-free triggers and unambiguous 

triggers for languages in the domain. In addition, larger language domains as well as 

language domains that are linguistically plausible should be investigated with regards 

to language domain shape. 
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5 Conclusions, Implications and Future Research 

 

This thesis provides a study of computational models of first language acquisition that 

implement the Subset Principle (SP). Importantly, a central concern throughout was 

the effect of constraining the learning algorithms to the extent that they make use of a 

psychologically viable amount of computational resources. The research presents: 

 

• An empirical analysis of eight SP-compliant simulated language learners 

designed to exploit the partial ordering of subset inclusion in a 

psychologically feasible abstract language domain (the CoLAG domain). 

 

• A comparison of these learners against learners that use a total ordering (full-

enumeration) of all the languages in the domain in which subsets are posited 

before supersets to guide learning.  

 

• An analysis of how the arrangement of the partial ordering of different 

language domains, what we call the domain's "shape", affects the performance 

of SP-compliant simulated language learners. 

 

5.1 Summary of Findings 

The central results of this thesis are the following: 
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• The hypothesis selection strategy of giving equal priority between the parser 

and SP-compliance works best. This is because this strategy directly focuses 

its attention to both viable hypotheses in terms of SP, and viable hypotheses 

in terms of the hypotheses' ability to license the input the learner encounters. 

The other SP-compliant learners examined in this thesis prioritized search 

strategies to either identify safe subset hypotheses or to find compatible 

hypotheses. This prioritization comes at a substantial cost.27 Unfortunately 

this learner gets "for free" knowledge of which combinations of parameter 

values instantiate a guaranteed smallest subset language. However, linguistic 

research on syntactic parameters has shown that parameter values often 

interact in complex ways. So it wouldn't be trivial for the learner to come by 

this knowledge. Given parameter interaction, in effect, the learner would have 

to calculate the smallest language status of each of the 2n languages in the 

domain (where n is the number of parameters). Still, the strong performance 

of this strategy would suggest that perhaps it would be worthwhile to develop 

a linguistically viable parametric system where subset parameter values are 

known or easily accessible.28  

 

• Partial ordering learners outperformed total ordering learners in terms of the 

number of parses. The thesis makes an argument for using number of parses 

rather than number of sentences as a metric to measure workload since it 

                                                 
27 Though other work described in Chapter 3 and briefly below indicates that the cost overall is not as 
extensive as the cost incurred by using a total-enumeration of a lattice. 

 
28 Note that the Decode Favor Unmarked learner (2.3.4 Decode Favor Unmarked Learner) would 
reduce to this learner if the linguistics of the CoLAG domain matched this description. 
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takes into account the computational effort expended during parsing an input 

sentence or sentences. The Total Ordering learner must parse every input 

sentence in the memory store each time it tests the next candidate grammar in 

the total ordering (enumeration). Since the learners must test each and every 

language up to the target language in the enumeration against its memory 

store, the parsing workload is tremendous for the Total Ordering learners 

when the target is more than a few grammars in from the beginning of the 

enumeration. Parsing workload is an element of the Gold paradigm that is 

largely overlooked. This result solidifies points made in discussion of the 

issue by Fodor and Sakas (2005) (cf. Pinker, 1979) and indicates that a partial 

ordering of subset-superset relationships is a beneficial advance over 

identification by enumeration. 

 

• As a preliminary result, language domains which have large breadth are 

harder to learn than language domains which have large depth. This result is a 

consequence of SP implementation in the various learners under study. By 

definition, a language domain with large breadth has more sister nodes at each 

level in the lattice compared with a domain with large depth which has few 

nodes at each level. In general, to implement SP, i.e., to insure that the target 

is safe to adopt, at the very least all direct subset languages of the target must 

be considered in some fashion or another. For domains with large breadth this 

is computationally expensive beyond what is required to go deep into a 

narrow tall lattice. It is probably the case that the domain of natural languages 
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is wider than it is tall; in fact this is the case with the CoLAG domain. This 

would lead to the conjecture that psychologically plausible learners must be 

adept at handling domains where supersets contain a multitude of sister 

subsets.  

 

5.2 Future Research 
 

There are many areas of research that can be pursued with respect to the current 

research. In this thesis we added memory for past grammars to simulated language 

learners. It would be interesting to analyze the effects of adding an input sentence 

memory store, such as the one used by the Total Ordering learner, to our SP-

compliant simulated language learners. Would the input sentence memory store 

increase performance or would performance ultimately suffer due to the extra 

computational load caused by use of the input sentence memory store? The size of the 

input sentence memory store could also be varied, i.e., an infinite store as in Gold’s 

(1967) paradigm, or bounded by a certain number of sentences. For example, the 

simulated language learner might only store the last five sentences that it was 

presented with. This would offset some of the extra computational load that is 

incurred by checking all of the sentences that the learner has encountered. The input 

sentence memory store could also be used selectively. For example, only use the 

memory store when the current input sentence cannot be parsed by a candidate 

grammar. If the current input sentence cannot be parsed by a candidate grammar there 

is no reason to take the performance hit incurred by checking the other sentences in 
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the memory store, since that candidate is not the target language. Adding an input 

memory store could create a more efficient simulated language learner that is a more 

accurate model of first language acquisition. 

 

Another area of research would be to perform a comparison study between our SP-

compliant learners and Yang’s Naïve Parameter Learner (NPL) on the CoLAG 

domain. The NPL is widely accepted in the research community as a plausible model 

of first language acquisition. In contrast to our SP-compliant learners, the NPL does 

not use the Subset Principle to avoid superset hypothesis. It depends on statistics to 

allow it to "retreat" from superset errors. Pilot studies we have conducted show that 

the NPL when tested on the CoLAG domain which contains languages that are in 

subset-superset relationships, takes a substantially larger number of parses to 

converge on the target grammar than learners that have an SP avoidance strategy 

'hardwired' and available for use, though a comprehensive set of simulation runs and 

analysis of the resulting data remains a project for the future. 

 

In this thesis we only performed a preliminary investigation of the effects of language 

domain shape on learner performance. There are additional variables that need to be 

taken into account in order to give a more detailed analysis of the relationship. For 

example, the subset-superset language domains used in this research do not have 

properly intersecting languages. Since previous studies have shown that the amount 

of overlap between languages (a measure of domain ambiguity) can drastically affect 

learning performance, it seems a reasonable next step to include this as a factor in 
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future work. In addition, different language domains should be created that vary the 

amount of intersection between these properly intersecting languages. Varying the 

connectivity of the lattice is another area to investigate. Each of the rows in the 

language domains investigated in this thesis were fully connected, i.e., a language in 

one row was a superset of all of the languages in the row directly below. An 

interesting target of study would be to see how well the learning efficiency of the SP-

compliant learners studied in this thesis fare in domains that exhibited sparsely 

connected partial orderings of its languages. 
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Appendix A – Miscellaneous Procedure Descriptions 
 

Environment.GetAnInput(): 
Selects a sentence at random from the target. Returns the randomly selected 
sentence. 

 
Environment.SetupTargetLanguage(GrammarID, LanguageDomain) 

Gathers all the sentences of the target language and stores them in a member 
variable of the Environment class. 

 
Flashlight.Reward(GrammarID): 
 Rewards all supersets of the given grammar. 
 
GetParseGrammarIDs(Sentence): 

Gets the set of grammar IDs corresponding to the grammars that can parse the 
given sentence. Returns a set of grammar IDs. 

 
LanguageDomain.PickRandomGrammar(): 
 Chooses a grammar at random. Returns a grammar ID. 
 
Lattice.GetLargestLanguages(): 
 Gets the set of largest language grammar IDs. Returns a set of grammar IDs. 

 
Lattice.GetSmallestLanguages(): 
 Gets the set of smallest language grammar IDs. Returns a set of grammar IDs. 
 
Lattice.GetSubsetIDs(GrammarID): 
 Get the subset IDs of a given grammar ID. Returns a set of grammar IDs. 

 
Lattice.IsAMemberOfSL(GrammarID): 
 Is the given grammar ID a member of the current smallest language set. 

 
Lattice.PickRandomGrammarFromSmallestLanguages(): 

Randomly picks a grammar from the current set of smallest languages in the 
lattice. Returns a grammar ID. 

 
Lattice.Remove(GrammarID): 
 Removes a given grammar from the lattice. 
 
Lattice.RemoveIncludingAllDescendents(Set): 

Removes all grammar IDs in the given set from the lattice. All descendents of 
each grammar ID in the given set are also removed from the lattice. 
 



 154

Learner.PickNextHypothesis(SearchSpace, Environment): 
Full descriptions of each learner’s override of this procedure will be given 
later in the dissertation. 

 
Learner.Reset(): 

Resets a learners state for a new trial. The implementation of this procedure 
will depend on the learning algorithm. For example, the lattice learners will 
need to reset the lattice by adding back all removed grammars.  

 
Learner.SetFirstHypothesis(): 

Sets the initial grammar hypothesis. The implementation of this procedure 
will depend on the learning algorithm. For example, some of the lattice 
learners will choose a grammar at random from the smallest language set.  

 
Licensed(Sentence, GrammarID):  
 Determines whether or not the given grammar can parse the given sentence. 
 Returns true if the grammar can parse the sentence and false otherwise. 
 
Oracle.AttainedTarget(GrammarID): 

Determines whether a given grammar ID is the target. Returns true if the 
given grammar ID is the target or weakly equivalent to the target and false 
otherwise. 
 

Oracle.Setup(GrammarID): 
 Gathers grammars that are weakly equivalent to the target grammar.  
 
PickRandomGrammarFromSet(GrammarIDSet): 

Picks a grammar at random from a given set of grammar IDs. Returns a 
grammar ID. 

 
SearchSpace.ResetForTrial(): 

Resets the search space for a new trial. All grammars in the language domain 
are put back into the search space. 

 
Set.Add(Element): 
 Adds the given element to the set. 
 
SetDifference(Set, Set): 

Calculates the difference between the two sets. The second set is subtracted 
from the first. Returns a set. 

 
SetIntersect(Set, Set): 
 Calculates the intersection of the two given sets. Returns a set. 
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Simulation::CreateLearner(): 
Creates an instance of a given learner. The type of learner instance to create is 
read in from a file.  

 
SPLatticeDecodeFavorUnmarked.PerformSerialParseChoosingUnmarked(Sentence): 

Perform a serial parse on the given sentence choosing unmarked values at 
choice points. Returns the grammar ID of the generated parse. 

 
SPLatticeFlashlight.GetGrammarWithHighestRewardFromSL(): 

Get the grammar with the highest reward value from the smallest language 
set. Returns a grammar ID. 

 
TotalOrderingLearner.AddSentence(Sentence): 

Adds a sentence to the collection of sentences that have been presented to the 
learner so far. 

 
TotalOrderingLearner.LicensedAll(GrammarID): 

Is the given grammar ID licensed by all the input sentences presented to the 
learner so far. Returns true if all sentences are licensed by the given grammar 
ID and false otherwise. 
 

TotalOrdering.MoveToNextGrammarHypothesis(): 
Moves the current grammar hypothesis pointer to the next item in the 
enumeration and returns that item. Returns a grammar ID. 
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Appendix B – Pseudocode Guide 
 
 
All capitalized words are keywords. 
 
CLASS/ENDCLASS: Used to define a class. 
 
ABSTRACT: Modifies a class definition. Used to define an abstract class. This type 

of class cannot be instantiated. 
 
INHERITS: Modifies a class definition. Used to define a class that inherits from 

another class. 
 
VIRTUAL: Modifies a class procedure definition. Used to define a virtual procedure. 
 
CLASSPROCDURES/ENDCLASSPROCEDURES: Block used to define class level 

procedures. 
 
CLASSVARIABLES/ENDCLASSVARIABLES: Block used to define class level 

variables. 
 
PROCEDURE/ENDPROCEDURE: Used to define a function or procedure. May or 

may not return a value. 
 
DECLARE: Declares a variable. Variables declared within a procedure are local to 

that procedure. 
 
RETURN: Used to return from a procedure. 
 
IF/THEN/ELSE/ENDIF: If statement block. Code is run only if the given boolean 

condition evaluates to true. 
 
WHILE/ENDWHILE: Looping block. The boolean test is at the beginning. 
 
DO/WHILE: Looping block. The boolean test is at the end. The code is guaranteed to 

be run at least once. 
 
FOREACH/ENDFOREACH: Looping block. Used to define a for loop. 
 

: Assignment 
 
/*: Start comment 
 
*/: End comment 
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