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Abstract  
 
Language learners with insufficient access to negative 
evidence about what is not in their target language must rely 
on the Subset Principle (SP), or some other similar 
conservative learning strategy, in order to avoid 
overgeneration. Recent attempts to incorporate such a strategy 
into psychologically realistic models of syntax acquisition 
have revealed two severe problems: SP application appears to 
demand computational resources that exceed those of 
children; and SP causes undergeneration failures if learning is 
incremental. We present a representational scheme for the 
domain of grammars which can alleviate both problems, and 
we report simulation data showing how it can best be 
employed in a learning model. 

 
Implementation Challenges 

Because language learners receive little information about 
non-sentences of their target language (Marcus, 1993), any 
model of natural language syntax acquisition must have 
some means of avoiding or minimizing overgeneration. The 
learning mechanism (LM) must be conservative: other 
things being equal, the grammar hypothesis it adopts must 
be the one that fits the positive input most snugly. This 
general principle has been cast as the Subset Principle in 
studies of syntax acquisition grounded in generative 
linguistics (Berwick, 1985; Manzini & Wexler, 1987). It is 
also a close relation of the domain-general size principle of 
Bayesian learning theory (Tenenbaum & Griffiths, 2001). 
For convenience here we will refer to this conservative 
tendency as the Subset Principle (SP) but leaving open the 
existence of many varied implementations of it. Our concern 
is a duo of recently uncovered practical problems that must 
be addressed by any such implementation if it is intended as 
a contribution to a psychological model of how children 
acquire syntax.  

As noted in Fodor & Sakas (2005), one problem is that 
rigorous application of SP appears to demand an undue 
share of the on-line computational resources that can 
reasonably be ascribed to a pre-school child. The second 
problem is that under some familiar learning regimes, SP 

becomes over-zealous and prevents convergence on the 
target grammar: without SP, learners are at risk of 
overgeneration errors, but with SP they are at risk of 
undergeneration errors. Thus despite its central importance, 
it is unclear whether SP (and/or its close relations in other 
frameworks, including statistical learning models) can be 
successfully incorporated into psychologically faithful 
models of language acquisition.  

We illustrate these problems below in a specific modeling 
framework that has served in the past as our basis for 
simulation experiments comparing the efficiency of various 
acquisition tactics (Fodor & Sakas, 2004). The targets for 
learning are parameter-based grammars (Chomsky, 1981 et 
seq.). In parameter setting (‘triggering’) models, it is 
commonly assumed that LM has no memory for prior input 
sentences or for which grammars it entertained previously. 
It retains from its past experience only the knowledge that is 
encapsulated in its current grammar. Thus, in contrast to 
models that accumulate data and seek regularities in it, 
parameter setting is incremental, in the sense that LM 
receives target language sentences one at a time and 
decides, on the basis of each one, either to retain its current 
grammar hypothesis or to switch to a different one.  

Despite these specific properties, we believe that the 
points we raise here have bearing on a broad range of 
approaches to syntax acquisition. The implementation of SP 
is equally challenging, or more so, for other current learning 
models, and any advances that can be made may therefore 
benefit those other approaches as well. In this paper we 
argue that it is essential to augment in some way the 
severely restricted memory of incremental models, and we 
propose a novel representational scheme that allows LM to 
keep track of the domain of grammar hypotheses, and 
thereby alleviates both the problem of on-line computational 
resources and the undergeneralization problem. 
 

The Computational Resources Problem  
SP is a comparative criterion for grammar selection: 
whether it permits a grammar hypothesis to be adopted 
depends on what alternative hypotheses are available. Given



input sentence i, LM should ideally adopt a grammar G such 
that the language L(G) includes i and has no proper subset 
L(G′) that includes i, where G′ is a possible grammar that 
has not been disconfirmed by prior input (if the model has 
knowledge of that; see below). But how can LM know 
which grammar satisfies these criteria? It appears that LM 
must have the ability to identify grammars that license an 
arbitrary sentence i, and moreover that it must have 
exhaustive knowledge of all (non-disconfirmed) grammars 
that license i, so that it can compare them against each other 
to ensure that it does not unwittingly adopt one that is 
prohibited by the existence of a less inclusive one. Thus, 
when LM’s current grammar fails on an input i and a new 
grammar must be adopted, LM has three tasks to do. Task 
A: Find a new grammar hypothesis G which does license i. 
Task B: Identify all other grammars that license i (in order 
to be able to check for subset relations as in Task C). Task 
C: Check whether any other grammar that licenses i 
generates a subset of L(G).  

Task A has proved to be a cumbersome problem for 
syntax acquisition models. It is not always obvious by 
inspection of an input word string what grammar might 
have generated it. Various strategies which start from the 
current grammar and amend it (e.g., reset one parameter at a 
time; reset only incorrect parameters) have been found to be 
inadequate because, for example, it is often unclear which 
parameters are incorrect. Recent models typically undertake 
extensive trial and error, selecting a grammar and then 
testing to see whether it will parse i (e.g., Gibson & Wexler, 
1994; Clark, 1992; Yang, 2002). The models that we have 
developed use the parsing routines instead to identify 
needed changes to the current grammar (Sakas & Fodor, 
2001). However, this technique has its limits. It can reliably 
identify one grammar that generates i, but not more than one 
without exceeding standardly accepted limits on the 
capacity of the human parsing mechanism. 

Task B (identifying all grammars compatible with i) is a 
challenge of a higher order. The natural language domain is 
highly ambiguous, with most sentence types compatible 
with multiple grammars (Clark, 1989). It is also a very large 
search space, possibly on the order of billions of grammars 
(2n for n independent binary parameters), so the workload 
would be prohibitive if indeed every grammar must be 
checked whenever LM is considering adopting a new one. It 
is clearly beyond the bounds of psychological plausibility to 
suppose that a child runs a billion parse tests, each with a 
different grammar, on a single input sentence to see which 
grammars succeed. To solve this problem, a completely 
different approach to SP is required which does not require 
exhaustive knowledge of all grammars that license i, as we 
discuss below. 

Task C (discovering subset relations between grammars 
that license i) might be achieved by comparing languages 
(sets of sentences) on-line, but this too would exceed 
plausible computational resources. An alternative approach 
would be to assume that LM is equipped with prior 
information as to which languages are subsets of which 
others. Ideally, these subset relations between languages 
would be transparently reflected in formal relations between 
their grammars, so that LM could simply inspect two 

grammars to find out whether one generates a subset of the 
other. 

This was proposed by Manzini & Wexler (1987), who 
suggested that each parameter has a default value and a 
marked value (notated 0 and 1 respectively) and that subset 
relations between grammars are due exclusively to these 
values: for any pair of grammars differing with respect to 
the value of a parameter P, the language with value 0 for P 
is a proper subset of the language with value 1 for P; and no 
other subset-superset relations hold between any grammars 
in the domain. We have called this the Simple Defaults 
Model (Fodor & Sakas, 2005). If it were true of natural 
languages, it would strongly limit the number of subset 
relations in the domain, thus reducing the scale of Task C. 
And it would provide LM with a trivially easy way to 
identify all the subsets of a language L(G): they would be all 
and only those languages whose grammars differ from G by 
having value 0 for one or more parameters for which G has 
value 1. 

Unfortunately, it seems that this optimal situation does 
not obtain in the case of natural languages. For our 
parameter-setting simulation experiments we have created a 
domain of 3,072 artificial languages, defined by 13 syntactic 
parameters and designed to be as much like real natural 
languages as possible despite necessary simplifications. In 
this domain the Simple Defaults Model fails. A high 
proportion (over 42%) of the subset relations that hold 
between grammars are not predictable from the subset 
values of individual parameters; they are due instead to 
interactions, often quite unruly, among two or more 
parameters. Therefore, any SP-implementation based on the 
Simple Defaults Model would under-report the subsets a 
language has, and would fail to protect LM against 
overgeneration errors. Simulation data confirm this 
expectation; we observe 64% failures for a model that 
performs without error when supplied with full information 
about subset relations.  

Perhaps other linguistic theories might offer better ways 
of predicting subset relations between languages based on 
their grammars, but none is known at present and in fact 
there are good reasons to suspect that the relationship 
between grammars and the languages they generate is bound 
to be disorderly: a small change in a grammar can 
completely change the set of sentences (word strings) it 
generates, and word strings generated by quite different 
grammars may happen to coincide. It therefore becomes 
important to consider what theoretical options there are, if it 
does turn out that subset relations cannot be projected on-
line by LM. It seems unavoidable to suppose, in that case, 
that LM has access to an innate database of some kind 
which provides subset-superset information. The biological 
origin of such a knowledge structure may be a mystery in 
the present state of understanding, and remains to be 
explored, but a first step is to find out whether, if it did 
exist, it would permit Task C to be achieved without 
incurring an unreasonable computational workload.  
 

From Enumeration to Lattice 
Formal learnability studies in the tradition of Gold (1967) 



assumed that the learning algorithm was provided with 
subset-superset information in the form of an enumeration 
of grammars: a total ordering of all the possible grammars, 
in which any subset grammar precedes all of its superset 
grammars. (Note that for convenience from now on we refer 
to subset relations between grammars, as a shorthand for 
subset relations between the languages that the grammars 
generate.) Because of its foundational status in formal 
learning theory, it is worthwhile to see whether an 
enumeration can be adapted for psychological purposes.  

The enumeration could serve as the innate database about 
subset-superset relations that LM would consult for Task C. 
It could also provide dynamic guidance for LM in its on-line 
process of grammar hypothesization. If LM hypothesizes 
grammars strictly in accord with the enumeration ordering, 
moving on to the next one only when the previous one has 
proven incompatible with the input, it will have obeyed SP 
without explicitly applying it. In particular, an enumeration-
based LM obeys SP without exhaustively identifying and 
comparing all candidate grammars; thus, the enumeration 
does away with Task B. It does so by rendering illicit 
grammars (i.e., superset grammars) inaccessible to LM;  
LM has access to a grammar only after all its subsets, prior 
to it in the ordering, have been disconfirmed. Also 
inaccessible are all previously disconfirmed grammars, 
since they are necessarily prior in the enumeration to LM’s 
current grammar; so those hypotheses are not revisited and 
convergence is thereby speeded.  

Thus a classic Gold-type enumeration makes short work 
of Tasks B and C. It falters, however, on Task A: selecting a 
new grammar compatible with the current input sentence. 
The enumeration gives LM no choice with respect to its 
next grammar hypothesis: when its current grammar fails to 
license input i, LM must try out the immediately next 
grammar in the enumeration. This has the obvious 
disadvantage that a grammar late in the ordering can be 
attained only after eliminating all billion-or-so grammars 
prior to it in the enumeration. As described so far, the model 
has no way to use the properties of the input sentence to 
move directly to an appropriate grammar, skipping over 
irrelevant ones in between. More importantly, we cannot 
introduce any devices that would do this, because once 
intervening grammars are allowed to be passed over, the 
role of the enumeration as the enforcer of SP is lost. The 
danger of LM passing over an intervening subset grammar 
would obviate the whole purpose of the grammar ordering. 
However, without the ability to move faster through the 
sequence by skipping grammars along the way, 
enumeration-based learning is generally regarded as being 
unredeemably slow and has not been embraced by 
psychological models of language acquisition (Pinker, 
1979).  

The excessive rigidity of the classic enumeration can be 
remediated, however, by shifting to a partial ordering of 
grammars, which places all subset grammars prior to their 
superset grammars but does not impose a fixed order 
otherwise. The partial ordering is sufficient to ensure 
compliance with SP, but in other respects it leaves LM free 
to move around the grammar search space, from less 
profitable to more profitable regions, using whatever skills it 

may possess for identifying a likely grammar to license i. 
On this proposal the database of grammars takes the form of 
a lattice (or strictly, a poset), as illustrated in Figure 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A small fragment (less than 1%) of a lattice 
representation of the domain of 3,072 parameterized 

languages used in the simulation experiments described 
below. Supersets are above subsets. 

 
Observe that the classic one-dimensional enumeration has 

been reshaped here. The smallest subset grammars in the 
domain are presented at the lower edge of the lattice, with 
their supersets above them. The lowest grammars are all and 
only those that constitute legitimate hypotheses for LM at 
the initial stage of learning prior to any input. A grammar 
that is higher in the lattice may be adopted only after all the 
grammars it dominates have been tested and disconfirmed 
by the input. This means that higher grammars will be 
attained more slowly on average than lower grammars, but 
the disparity is far less than between the earliest and latest 
grammars in a classic enumeration: the maximum depth of 
the lattice for our natural-language-like domain of grammars 
is 7; the mean depth is 3.4. It can be supposed that as lower 
grammars are disconfirmed they are deleted from the lattice, 
so that the set of grammars accessible to LM, at the lower 
edge of the lattice, gradually changes over time. A grammar 
that has many subsets will start out high in the lattice but 
will work its way down if and when the subset grammars 
beneath it are erased.  

As far as SP is concerned, LM may choose freely from 
among the accessible grammars at the bottom of the lattice. 
It might do so by random trial and error if no better 
mechanism is available. But the lattice has a considerable 
advantage over a total enumeration in that it leaves LM 
some elbowroom to apply useful grammar-guessing 
strategies. Any linguistic knowledge that LM may have can 
be put to work to extract relevant properties of input 
sentences to guide its grammar choices. The family of 
learning models that we have proposed, known as Structural 
Triggers Learners (STLs; Fodor & Sakas, 2004), can do 
this. STLs use the technique noted above, of employing the 
parsing routines for on-line detection of how the current 
grammar can be supplemented to accommodate input i. It 
works as follows. The parser applies LM’s current grammar, 
Gcurrent, to the input sentence. If the parse succeeds, LM 



retains Gcurrent. If the parse fails, then at the specific locus 
of that failure in the word string, the parser is permitted to 
draw on other linguistic resources (specifically, previously 
unused parameter values) as necessary in order to complete 
the parse. LM then adopts whichever new parameter values 
contributed to rescuing the parse.  

We call this decoding the input sentence. The parser does 
not merely register whether a given grammar licenses i or 
not, but actively finds a grammar that licenses i. As noted 
above, it cannot realistically be assumed that for an 
ambiguous input the human parser computes every grammar 
that could license it. Moreover, the one grammar it does find 
may not be the correct grammar for i in the target language, 
but it is at least a genuine candidate hypothesis, one that 
might be correct or could lead LM in the direction of one 
that is. The consequence of combining this decoding 
strategy with the lattice representation of possible grammars 
is that LM does not waste effort checking grammars that 
have no relation to the current input. Instead, the work of 
testing and discarding grammars in the lattice is highly 
focused on grammars that do license sentences in the 
learner’s input sample. In many regions of the lattice there 
may be no activity at all, because the grammars there are 
unable to parse target language sentences (e.g., they 
generate head-final constructions while the target language 
is head-initial). The lattice representation combined with 
input decoding thus may be a step towards an optimal 
grammar search strategy.  

To summarize: Like an enumeration, the partial ordering 
of grammars in a lattice encodes essential information about 
the subset-superset relations in the domain. Also like an 
enumeration, it blocks LM’s access to unsafe (superset) 
grammars, so that LM can avoid them without engaging in 
resource-heavy comparisons between grammars. Unlike an 
enumeration, it does not insist on a single fixed sequence of 
grammar hypotheses. Subset-superset grammars must be 
ordered because of SP, but other grammars are freely 
accessible. This decreases the learning time discrepancy 
between the least and most accessible grammars in the 
domain, and also permits LM to take advantage of linguistic 
information (cues, triggers) in the input to guide its search 
through the lattice for the target grammar. The simulation 
data we present below show that while there are better and 
worse ways for a learner to make use of a lattice, a lattice-
based model can indeed reliably prevent overgeneration 
without exceeding reasonable computation loads. 
 

The Undergeneralization Problem 
The erasure of disconfirmed grammars from the lattice 
offers a straightforward solution to the problem of 
undergeneralization that can afflict incremental learners. 
Incremental learning is widely favored over batch learning 
from a psychological point of view, because it presupposes 
neither memory for the entire input sample, nor methods for 
fitting a grammar to a large corpus. However, there is a 
fundamental incompatibility between incremental learning 
and the conservative learning that is needed for avoiding 
overgeneration. SP is often cast informally as the 
requirement that LM should select the least inclusive 
grammar compatible with the input. But if the only input 

accessible to LM is the current sentence, the least inclusive 
grammar compatible with it will generate a very small 
language indeed; it is likely to lack many language 
phenomena that were acquired from previous inputs no 
longer in memory. For instance, all long-distance movement 
would be lost if the current sentence has none. The fact that 
the previously acquired phenomena are generated by LM’s 
current grammar does not protect them from loss. 
Conservative learning requires that all contents of the 
current grammar be given up when a new grammar is about 
to be adopted, except those that are known to be correct. 
Otherwise LM’s grammar would just keep growing as the 
sum of all its previous false hypotheses, and overgeneration 
would be rife. However, since most learning models 
hypothesize grammars on the basis of ambiguous input (and 
most cannot even tell which inputs are ambiguous and 
which are not), LM can rarely be certain that some 
phenomenon it previously ‘acquired’ is veridical. Hence SP 
(or comparable conservative learning principles) would 
repeatedly force the learner to regress to very limited 
languages compatible with just the current input. (See Fodor 
& Sakas, 2005, for additional discussion of this problem of 
excessive retrenchment.)   

Since there is no evidence that child learners are afflicted 
with this problem, it should not occur in our learning 
models either. A simple solution would be to abandon 
incremental learning entirely. If it were assumed instead that 
LM holds in memory all or many of its prior input 
sentences, it could not be forced by SP to adopt a language 
smaller than the minimal one that contains all of those 
sentences. Psychological models of parameter setting that 
base each grammar hypothesis on a collection of many 
sentences (unlike ‘triggering’) may well be of interest but no 
standard implementation currently exists (though see Kapur, 
1994). An alternative approach, which avoids giving up the 
psychologically desirable aspects of incremental learning, is 
to eliminate languages from the hypothesis space as and 
when they are found to be too limited to include the input. 
As learning proceeds, languages that are excessively small 
will be ruled out; the smallest languages in the pool will be 
larger and larger, and LM can now adopt them even in 
response to a single input sentence. E.g., once languages 
without long-distance movement have been eliminated by 
previous input exhibiting long-distance movement, LM will 
necessarily adopt a grammar that licenses long-distance 
movement even if the current sentence exhibits no 
movement at all. Elimination of disconfirmed grammars is 
very natural in a lattice-based model, as sketched above. 
Note that this antidote to excessive retrenchment adds 
memory to the incremental model in order to solve the 
undergeneration problem, but it does so in an economical 
way. A lattice model with erasure retains the fruits of past 
learning not by accumulating memory traces of prior events, 
but by unburdening long-term memory as the innate lattice 
representation is progressively simplified. 
 

Computational Evaluation of Lattice Models  
Our simulation studies are conducted on the domain of 
constructed languages described above, defined by familiar 



syntactic parameters that govern word order, null subjects, 
wh-movement and so forth. To isolate syntactic parameter 
setting from the acquisition of lexical items, the sentences 
are pre-coded as strings of part-of-speech labels (cf. Gibson 
& Wexler, 1994). A detailed description and examples of 
the languages can be found in Sakas (2003). The sentences 
of a target language are fed to a learning model which 
guesses a grammar after each one. In the simulations 
reported below, each learning model was run 100 times on 
each language in the domain, with a ceiling of 10,000 input 
sentences on any trial. We record the percent of successful 
convergence on the target grammar, and the average number 
of input sentences consumed before convergence. These 
measures allow us to quantify the reliability and efficiency 
of a wide variety of alternative models.  

Six variants of the lattice-based model outlined above 
have been tested in this environment. They differ from each 
other as indicated below. Some make use of the lattice but 
do not decode the input; some do decoding but do not make 
full use of the lattice. Our purpose in comparing this range 
of models was to assess the relative contributions of these 
two components, and to identify limits on the usefulness of 
the lattice concept. The results are shown in Table 1. Note 
that SL denotes the set of ‘smallest languages’ at the lower 
edge of the lattice. The descriptions indicate what the 
learning model does on receiving a novel input i which 
Gcurrent does not license; its task is to find and adopt an SP-
compatible grammar that parses i. Unless otherwise 
specified, a grammar that has failed on i is erased from the 
lattice before the next input is processed.  

 
M1: No Decoding, SL: If Gcurrent fails, select any grammar 

G in SL; run parse-test; if G fails erase it from the 
lattice and retain Gcurrent; if G succeeds, adopt it as 
Gcurrent. 

 

M2: No Decoding, SL, Activation: Like M1 except that 
every grammar has an activation score. If Gcurrent fails, 
select the grammar G in SL with the highest activation; 
run parse-test; if G fails, erase it from the lattice and 
select the grammar with the next highest activation as 
the new Gcurrent; if G succeeds, adopt it as Gcurrent and 
add one activation unit to all grammars that dominate 
it in the lattice (since these all also license i). 

 

M3: Decoding and SL: Decode i (i.e., use Gcurrent to 
initiate a parse of i; if it succeeds, retain Gcurrent; if it 
fails, patch the parse tree with new parameter values as 
necessary and adopt them into Gcurrent), but subject to 
the condition that only values in the grammars in SL 
are available for adoption. If decoding fails, as it may 
due to this restriction, select a grammar at random 
from SL to be the next Gcurrent. 

 

M4: Decoding (Defaults), SL as Filter: Decode i (see 
above), favoring subset (i.e., default) values of 
parameters if there are alternative parses of i; if the 
decoded grammar is in SL, adopt it; else retain 
Gcurrent.   

 

M5: Decoding (Random), SL as Filter: Decode i (see 
above), making a random choice if there are alternative 

parses of i; if the decoded grammar is in SL, adopt it; 
else retain Gcurrent. 

 

M6: Decoding (Random), Track Downward: Like M5, 
but if the decoded grammar G′ is not in SL, run parse 
tests on daughters of G′ until a grammar is found that 
parses i; repeat recursively on its daughters until a 
grammar is found with no daughters that parse i; adopt 
that grammar. (See discussion of this strategy below.) 

 
Table 1: Measures of reliability and efficiency for 

some lattice-based learning models 

   
Note that the fourth column of Table 1 shows how many 
input sentences were required, averaged across languages, 
for 99 of the 100 trials of the learning model on a given 
language to attain the target grammar. Since the vast 
majority of children do acquire their target language, this is 
an appropriate and rigorous estimate of a model’s 
performance.   
 
Discussion of Results  
The data make it evident that not every way of incorporating 
a lattice representation into a learning model is helpful, but 
at least one of the designs we tested is both reliable and 
speedy. Not unexpectedly this is version M3, which is the 
only one that fully integrates partial decoding and the lattice 
representation. It required fewer than 300 input sentences 
for 99% convergence on grammars in this domain. This 
compares favorably with the performance of decoding 
learning models that we have tested in the past which lacked 
any machinery for applying SP (so that it had to be 
externally imposed by an oracle that blocked adoption of 
overgenerating grammars).  

Other noteworthy outcomes include the fact that model 
M1, which employs the lattice without taking advantage of 
the opportunity to do decoding, is very slow, as is 
characteristic of models that rely on trial and error in 
selecting which grammars to test. Models M4 and M5 use 
the lattice not to help select their hypotheses but only to 
filter them after selection, and they are both extremely slow, 
with many ‘time-out’ failures (88% and 69% respectively). 
M4 is speedy only for a handful of target languages near the 
bottom of the lattice, for which it does succeed; M5 is a 
generally slow trial-and-error system.  

Despite a few time-outs, model M6 mostly works fast in 
terms of number of input sentences, but it does extra work 
in processing each one, to make up for the fact that it does 
not restrict its hypotheses to the ‘safe’ grammars at the 
bottom of the lattice. This gives LM the freedom to focus on 
a preferred grammar, but the cost is that multiple parse tests 

Model % 
success 

Average 
sentences 

Average 
for 99% 

# parses per 
sentence 

  M1 100 858     1,454 1 
  M2 100 900 968 1 
  M3 100 140 286 1 
  M4 12 23 71 1 
  M5 31 2,631 6,032 1 
  M6 96 190 694 mean 4.8 



are then needed to identify any SP-compatible grammars 
beneath it in the lattice, since they must take precedence. 
The average of approximately 5 parse-tests per sentence is 
less than we had anticipated but is still an implausible 
amount of computation to be performed every time a child 
hears a sentence.  

A promising finding for future work is that M2’s 
activation levels for grammars confers some advantage 
compared with M1, at least in the 99% convergence score. 
This activation strengthens grammars in proportion to how 
many target language sentences they have been observed to 
license, and thus helps to attract the learner toward 
profitable areas of the lattice. It may be that incorporating 
activation into model M3, which already successfully 
combines SL and  decoding, will yield the best performance 
of all but we have not yet investigated this. 
 

The Source of the Lattice  
What may be hard to swallow about the subset-superset 
lattice is why it should exist at all in the minds of language 
learners. Perhaps the best that can be said in its defense is 
that it is not an impossibility if the domain of grammars is 
finite. But it is likely to be very large, and it serves no other 
apparent purpose than SP. The principles-and-parameters 
theory assumes that the set of all possible grammars is 
determined by the innately-given parameters and their 
values. So why should each grammar also be individually 
specified in a lattice? Clearly, the lattice-based model for 
SP-implementation would be more palatable if, as we 
considered above, there were general principles for 
projecting not just the set of grammars but all the subset 
relations between them. However, the facts of our 
constructed language domain do not encourage confidence 
in this. In Figure 1, which is quite typical of the domain as a 
whole, it can be seen that there are pairs of grammars for 
which one of the subset-superset parameters (P4-P7, P10-
P13) has value 0 in the superset grammar and value 1 in the 
subset grammar, contrary to the Simple Defaults Model. For 
instance, there are over 50 such reversals just for parameter 
P13 (Question Inversion). We are currently exploring richer 
predictive schemas for identifying subset relations between 
languages by inspection of their parameter values, in hope 
that the subset relations in the lattice will ultimately prove to 
be fully projectible on-line rather than needing to be 
hardwired. But in the meantime we hope to have shown here 
that a lattice representation of subset relations – or some 
projectible version of it – is worthy of study since it offers 
solutions to two thorny problems in modeling conservative 
learning from text.  
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