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1. The research project* 

 
Our research group has built a research environment for testing models of 

syntactic parameter setting. We have created a domain of 3,072 languages with 
up to 1,432 sentences in each, defined by a set of Universal Grammar (UG) rules 
and 13 (so far) binary parameters. The languages resemble human languages in 
many respects, though they are considerably simpler (details below). Each of 
these languages is designated in turn as the target for acquisition and its 
sentences are input to a learning algorithm. We measure whether learning is 
successful (is the target reliably attained?) and how long it takes (how many 
input sentences the learner consumes before arriving at the target grammar). Our 
goal in preparing this rich testing environment was to further the search for a 
credible psycho-computational model of syntactic parameter setting. That 
sounds very grand, but what it means is just: a model that is psychologically 
realistic, precisely specified, compatible with linguistic principles, and as 
reliably successful as children are. This has proven remarkably elusive.  

Individual grammars are defined by their parameter values, so acquiring a 
language consists in identifying the parameter values that license it.1 When the 
principles and parameters (P&P) theory of grammars was first proposed 
(Chomsky, 1981), it was hailed as a sweeping solution to problems that had 
                                                 

* This work is presented on behalf of the CUNY Computational Language 
Acquisition Group (CUNY-CoLAG), and was supported by grants from The 
City University of New York PSC-CUNY Research Award Program. Much 
credit is due to colleagues and students who have contributed to this research: 
Carrie Crowther, Atsu Inoue, Xuan-Nga Kam, Yukiko Koizumi,  Eiji Nishimoto, 
Artur Niyazov, Yana Pugach, Lisa Reisig-Ferrazzano, Iglika Stoyneshka-Raleva, 
Virginia Teller, Lidiya Tornyova, Erika Troseth, Tanya Viger, Sam Wagner. 
The language domain described below, and other information, is available at 
www.colag.cs.hunter.cuny.edu. 

1. When we refer to a grammar in what follows we will mean the syntactic 
component of a grammar (the computational system). The lexicon must also be 
learned, but we have set that aside in our current research while recognizing the 
significant problems posed by the interaction of syntax and lexicon. We also do 
not consider the acquisition of phonology or morphology, and we assume 
universal semantics. 
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been building up within traditional attempts to model language acquisition as 
rule creation. If the whole grammar is innate except for just 20 (or even 200) 
binary parameters of variation, then a child has only 20 (or 200) simple facts to 
acquire from the input. The child’s task is focused by the parametric format. It 
demands no creativity and only minimal data processing. The mechanism for 
assigning a value to a parameter is called ‘triggering’, a process held to be fast, 
accurate and ‘automatic’, the latter implying that it requires no linguistic 
computation on the part of the learner. However, the triggering process has 
never been precisely modeled in psycholinguistics or computational linguistics. 
It seems clear that it never will be, for reasons that are now well understood. In 
important work through the 1990s, Robin Clark, Ted Gibson, Kenneth Wexler 
and others have shown that parameter setting cannot be labor-free and is not 
always successful. Parameter setting as a concept is still paramount, but 
parameter setting as a process has become a source of problems rather than 
solutions.  

Several models of the parameter setting process have been proposed in the 
literature. A striking fact is how little they resemble the pre-theoretic notion of 
triggering. Acquisition is viewed, rather, as a search through the field of all 
possible grammars to find one that licenses the sentences in the input sample. 
The ingenuity in these models consists in their adaptation to language of various 
general-purpose search techniques for large-scale domains. In our own work we 
have tried instead to stay as close as possible to the original notion of triggering, 
retaining the central aspect that an input sentence guides the learner toward the 
particular parameter(s) that need to be reset. We believe this is psychologically 
more plausible than the grammar search techniques, and also that it is more 
efficient. But that needs to be shown. It is extremely difficult to gauge the 
efficiency, or even the reliability, of a proposed learning procedure from a 
description of it in the abstract. Language structure is so intricate, and the 
number of potential target languages a learner must be equally capable of 
acquiring is so great (even for a relatively small number of parameters), that it 
not easy to anticipate how a particular learning algorithm will perform when 
actually put to the test. Simulation studies are therefore essential.2  

Previous simulation studies have varied in scope. Some evaluate a single 
learning model in a miniature natural-language-like domain. Most notably, 
Gibson & Wexler (1994) tested their Triggering Learning Algorithm (TLA) on a 
3-parameter domain parameterized for word order. This domain was 
subsequently expanded. Bertolo et al. (1997) added verb raising, and word order 
parameters for embedded clauses. Kohl (1999) studied Bertolo’s full 12-
parameter domain which included also several parameters for scrambling. Clark 
(1992) and Nyberg (1992) have employed a large but abstractly characterized 
                                                 

2. Mathematical methods, as in the tradition of Gold (1967) and Angluin 
(1980), have yielded important general results (see Jain et al., 1999, for 
discussion and references), but they require simplifying and homogenizing 
assumptions somewhat far removed from the realities of human language. 
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domain (30 parameters) in which the ‘sentences’ consist of codings of their 
licensing parameter values. Briscoe (2000) and Villavicencio (2000) have 
employed categorial-grammar-based domains (up to 28 hierarchically organized 
parameters generating up to 800 languages). Villavicencio used one target 
language (English) as the test-case for her learner; the input was based on a 
transcript of child-directed speech. Yang (2002) has tested sets of two or three 
competing parameters, drawn from a larger domain, against statistics derived 
from the CHILDES database (MacWhinney 2000). What our simulation project 
adds to this earlier work is the ability to compare the performance of a range of 
different learning models, all exposed to the same large collection of 
realistically-structured languages. The results we report here are preliminary. 
There are many more empirical questions to be asked and answered about these 
models. But among those we have tested we are finding the best combinations of 
efficiency and psychological fidelity among our own class of learning models, 
the Structural Triggers Learners (Fodor 1998; Sakas & Fodor 2000; Sakas & 
Nishimoto 2002).  

 
2. Parameter setting is difficult 

 
Why has parameter setting been hard to model? The trouble, in a nutshell, is 

that sentences do not always announce which parameter values license them. A 
learner’s task is to determine which parameter values were employed by the 
speaker who uttered the sentence, but the learner may not even be able to tell 
which values could have yielded that sentence. In consequence, even a sentence 
which is in fact a fully unambiguous trigger for a particular parameter value may 
convey very little information to the learner. The causes of this can be grouped 
into two kinds: parameter interaction problems and parametric ambiguity 
problems.  

 
2.1 Parameter interaction problems 

 
Clark (1988, 1992) has drawn attention to the fact that even if parameters 

are formally independent, they interact with each other in derivations. The 
surface string, which is what a learner is exposed to3, reflects the combined 
effects of UG principles and all the parameter values that contributed to the 
derivation of the sentence. As a result, a given parameter value may have no 
distinctive isolatable effect on sentences. That is: it has no trigger, in the strong 
sense of the term. (In a cue-based learning model such as proposed by Lightfoot, 
1991, for syntax, and Dresher, 1999, for phonology: it has no cue.) Learners 
                                                 

3. As emphasized by Pinker (1984), Morgan et al. (1987) and others, the 
semantic, prosodic and morphological properties of sentences can provide 
learners with cues to the syntactic structure of their input, though these 
properties were traditionally disregarded in computational learning research. We 
are just beginning to incorporate them into our language domain. 
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must therefore engage in what we have called parametric decoding. They must 
somehow disentangle the derivational interactions in order to identify which 
parameter values a sentence requires. Unlike the older conception of ‘instant 
triggering’, this parametric decoding evidently cannot be automatic or effortless. 
It is hard work precisely because parameters work in concert with each other. 
How it is done is what distinguishes one learning model from another.4  

Parameter values are not transparently displayed by input sentences, so 
learners can’t just read them off. It seems, then, that a process of trial and error 
is inevitable. The learner must try out some possible parameter values and see 
whether they work. Since the effects of individual parameters cannot always be 
isolated from each other, it also seems inevitable that parameter values must be 
tried out in combination rather than singly. This explains why recent research 
has tended toward models in which a whole grammar is selected for testing 
against an input sentence, to see whether or not it is compatible with it, i.e., 
whether it can parse it. Trial and error on whole grammars is about as different 
from triggering as can be imagined, but it does squarely confront the parameter 
interaction problem. On the other hand, it does not obviously recommend itself 
in terms of efficiency. It can be implemented in various ways, but none is ideal. 
If a single grammar is tested per input sentence, many learning opportunities 
will be wasted due to unlucky guesses as to which grammar was worth trying. If 
many grammars are tested per input sentence, the hit rate will be higher but the 
computational load will exceed plausible psychological limits. The number of 
candidate grammars is huge (see below), and in the worst case every one of 
them must be tested in order to identify a single correct parameter value. 
Suppose value vi of parameter P is necessary to license a particular target 
sentence, but that it does so only if all other parameters are correctly set. An 
unlucky learner might try out each value of P, in the company of all 
combinations of values of the other parameters, and fail consistently before 
eventually hitting on the right combination. 

 
2.2 Parametric ambiguity problems 

 
Parametric ambiguity occurs when a sentence (a surface string) belongs to 

two or more possible languages, generated by distinct grammars (= distinct 
collections of parameter values). A parametrically ambiguous sentence does not 
reveal which parameter values licensed it. It would not do so even if the 
decoding problem had been solved. At best, decoding could indicate the range of 
candidate parameter value combinations. Then the learner could guess among 
those, and not waste effort on grammars that couldn’t possibly be the target. 
Alternatively, when decoding reveals ambiguity, a learner might discard that 
                                                 

4. For models not assuming syntactic parameters, or any UG at all, the same 
problem arises but in a different guise. The learner must still, in some fashion, 
establish what an input sentence reveals about the target grammar and this may 
be opaque.  
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sentence in order to avoid the risks of guessing. However, this ‘waiting’ strategy 
places even heavier demands on decoding than a guessing strategy does, since it 
assumes that the learner can know when more than one grammar licenses the 
sentence, so its search for candidates must be exhaustive. In fact, the difficulties 
of decoding are so great that most current models do not even aspire to 
ambiguity detection (multiple decoding). However, a Structural Triggers 
Learner (STL) is capable of detecting and responding appropriately to ambiguity, 
due to its relatively efficient decoding process, as we explain below.  

How much parametric ambiguity there is in natural language has never been 
quantified, but it is surely considerable. The question is: How much overlap is 
there between the sentences of distinct languages? Assuming that children 
receive (or attend to) relatively simple sentences, the amount of ambiguity they 
face is likely to be especially high. There are not that many distinct ways of 
arranging a few basic sentence constituents such as subject, verb and object, so 
any one arrangement is likely to occur in many languages. More complex 
sentences are typically less ambiguous, but also less accessible at early stages of 
learning. The amount of cross-language overlap (for a given number of potential 
sentence patterns) depends on how densely packed the language domain is, and 
this is a function (in part) of how many languages there are in the domain. For 
the natural language domain, that number is high on all current estimates. We 
discuss the matter of scale in section 2.4 below. The point we emphasize here is 
that more languages can mean not just a larger search space to scour for the 
target, but also more ambiguity, i.e., less information per input sentence.  

In our artificial domain, the most ambiguous sentence (which consists of a 
single verb) occurs in all 3,072 languages; the least ambiguous sentences occur 
in just two languages; and the mean for all 28,924 sentences in the domain is 
326 languages.5 Thus, even with complete and perfect decoding, the average 
probability of guessing correctly by pure chance would be only 1 in 326. Of 
course there is no reason to suppose that these proportions are characteristic of 
the whole domain of natural languages (especially as ambiguity is inflated in our 
domain by the simplicity of its sentences), but this does give some sense of how 
severe the ambiguity problem can be. 

 
2.3 Examples from the CUNY language domain 

 

                                                 
5. These numbers include parametric irrelevance folded in with parametric 

ambiguity. In fact, in every case where a sentence sets all but one parameter, 
that parameter is irrelevant to the sentence (e.g., the Pied Piping parameter for a 
sentence with no prepositional phrases). In other words, the domain includes 
some fully unambiguous triggers. On the other hand, this measure of ambiguity 
gives a low estimate of the amount of parametric uncertainty for learners, 
because a sentence may have several derivations using different parameter 
values even in the same language.  
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Examples (1)-(3), from our language domain, illustrate both parameter 
interaction and parametric ambiguity. Readers may enjoy the challenge of 
decoding these sentences, though we caution that the exercise may be frustrating 
because the parameter names are only a rough guide to what the parameters 
actually do, and we lack space to specify them in detail here. These ‘sentences’ 
look odd because we abstract away from lexical variation across languages by 
using grammatical category symbols as a universal vocabulary for all languages 
in the domain (a strategy borrowed from Gibson & Wexler, 1994). The 
structures of these sentences are well-defined. They are generated by a universal 
grammar supplemented by the parameter values. There are 13 binary parameters 
(not all fully independent; see Table 1), which participate in familiar P&P 
(government-binding theory) analyses. For ease of implementation, however, 
the grammar is represented in a generalized context-free phrase structure format. 
The parameter values take the form of underspecified PS rules, or subtrees 
(‘treelets’). For example, the parameter value that licenses Wh-Movement is a 
treelet consisting of a Spec,CP with a [+WH] feature. Any language which has 
this parameter value treelet can make use of it in generating sentences. UG 
entails that a Spec,CP[+WH] will always dominate a constituent that is 
marked[+WH] and is associated (via SLASH features) with a trace created 
elsewhere in the sentence. (Note: O1 is a direct object. O3 is the object of a 
preposition. KA is a question marker, borrowed from Japanese, which appears in 
all interrogative sentences in all languages if the finite verb has not raised to Co.)   

 
(1) O3 Verb Subj O1[+WH] P Adv. 

This sets: no wh-movement, preposition-stranding, head initial VP, V-to-I 
movement and I-to-C movement, no affix hopping, C-initial, subject initial, 
no overt topic marking. It is ambiguous with respect to: obligatory topic, 
null subject, null topic.  
 

(2) Adv[+WH] P NOT Verb Subj KA.   
This sets all parameters except ±overt topic marking. For example, it sets 
null topic and no null subject because the absence of an overt O3 can only 
be due to topicalization of O3 followed by topic-drop (i.e., null topic), and 
UG specifies that null topic is mutually exclusive with null subject. 

 
(3) O1-WA Verb. 

This sets +overt topic marking and +null subject, which entails –null topic 
and –obligatory topic. (Without -WA, this sentence would set no 
parameters at all.) 
 

2.4 Problems of scale 
 
The effort of parametric decoding and the degree of parametric ambiguity 

can both be exacerbated by the size of the domain. How large is the natural 
language domain? If there are n independent binary parameters, there are 2n 
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possible languages. So now we need to know how many natural language 
parameters there are. Linguistic research aims to keep their number low, by 
showing that several sources of language variation are correlated and so can be 
attributed to a single parameter. Nevertheless, early estimates of 20 to 30 
parameters have been overtaken by more recent developments in linguistic 
theory. Roberts (2001) notes that Cinque’s (1999) cross-linguistic analysis of 
adverb order implies that more than 64 parameters govern the extended 
projection of the verb within its clause. Guardiano & Longobardi (2003) 
estimate that there are “no less than 40 binary parameters (and, perhaps, no more 
than 50…)” for the internal structure of nominal phrases. Without putting a 
specific number on the totality of parameters for all aspects of syntax, it seems 
that (unless future research succeeds in shrinking the parametric inventory 
dramatically from its present level) the number of natural languages is more 
likely to be in the neighborhood of 2200 than 220. And 2200 is the sort of number 
that makes a difference to what is psychologically feasible. The arithmetic is 
straightforward. 20 independent binary parameters would yield 220 grammars, 
which is over a million; 30 parameters yields over a billion; and every additional 
10 parameters multiplies the number of grammars by a factor of more than 1,000. 
So 200 parameters would give a very large number of natural languages (vastly 
more than there are neurons in the human brain).6  

Clearly, then, learning models must scale up; they must be efficient for 
large domains as well as for small ones. Specifically: the complexity of their 
operations should not increase in proportion to the number of grammars. Ideally 
it should stay in a range linked to the number of parameters: a function of 200, 
not of 2200. This excludes any learning strategy which involves testing every 
grammar against each input sentence. Such methods are clearly out of the 
question. This is the reason why learning models that rely on grammar guessing 
have had to seek out clever search methods which can sample and test the vast 
field of grammars with great efficiency. Clark (1992) turned to genetic 
algorithms, which test batches of grammars, find the best ones in each batch, 
and then ‘breed’ them to obtain even better ones. Gibson & Wexler’s TLA is a 
hill-climbing algorithm which proceeds through the domain from one grammar 
to another in search of improved performance at each step. These methods have 
not been robustly successful. For example, Kohl (1999) has documented a high 
failure rate for the TLA; see section 3.3 below. Clark (personal communication) 
does not regard a genetic algorithm, however successful, as a model of human 
learners because it exceeds plausible computational resource limits. 
                                                 

6. If parameter values are conceived of as comparable to lexical items, 
acquiring 200 parameter values might be regarded as no more demanding than 
acquiring 200 new words, which is something young children do every month or 
so (and with the extra advantage that parameters are fully prefigured in UG). 
This is a tempting picture and worth considering seriously, but it must be borne 
in mind that new words often instantiate patterns already encountered, while a 
new parameter value can have a complex effect on the structures of the language. 
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Our own approach is quite different. The STL models, as discussed more 
fully below, can do some parametric decoding. Because human resource 
limitations preclude full parallel processing, this can be only partial decoding in 
the case of ambiguous sentences. Ideally a learner would identify all the 
grammars that could license a given sentence, but an STL can identify just one 
such grammar (and can sometimes tell that there are no others). The work is 
done by the sentence parsing mechanism, which is assumed to be innate. It finds 
one successful grammar for each sentence by drawing on parameter values on-
line, as needed to complete the parse tree. This on-line processing is facilitated 
by casting the parameter values as treelets. Since these are transparently related 
to sentential parse trees, the parser can recognize which treelet(s) are needed to 
complete a parse. There is no guarantee that the one grammar that the parser 
identifies for an ambiguous sentence is the correct one, so this does not 
eliminate the ambiguity problem. But it does mean that the learner can focus its 
search on just those grammars that are real candidates (capable of licensing the 
current input), rather than sifting through the very much larger set of all 
grammars in the domain. This means that the task is scaled only by the extent of 
ambiguity in the domain, which is inescapable, and which will typically be less 
than fully exponential in the number of parameters.  

 
2.5 Non-UG-based learners 

 
Our simulation experiments to date have been almost exclusively concerned 

with parametric models that have access to a rich set of UG principles and a 
UG-determined list of parameters and their possible values. Even so, it is 
evident from the discussion above and the data reported below that syntax 
acquisition is not easy. We might imagine that without the benefit of UG it 
would be even more difficult. Yet there is a growing interest these days in 
learning systems that have little or no innate structure. Instead, they have 
powerful data processing techniques capable of picking up statistical regularities 
over a complex array of input. Dozens of papers advocating this approach have 
been presented or published in the last few years; see for example Lewis & 
Elman (2002), Pereira (2000), Seidenberg & MacDonald (1999) and references 
there. For those who believe that linguistic research has established that many 
properties of human language are universal, and hence most likely innate, this 
should be a matter of concern. From its inception, UG has been regarded as that 
which makes acquisition possible. But for lack of a thriving UG-based account 
of acquisition, UG has come to be regarded instead as an irrelevance or even an 
impediment. It is clearly open to the taunt: All that innate knowledge, only a few 
facts to learn, yet you can’t say how!  

We believe the reason for this is the inability of recent UG-based 
acquisition models to deliver the rich information that UG contains, to the 
learner’s analysis of input sentences. To play its part, UG should interact 
productively with a novel sentence, guiding the learner to construct a legitimate 
representation of it, requiring grammatically relevant features to be included and 
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irrelevant ones to be stripped off, assigning priorities to alternative analyses (a 
markedness ranking), and so forth. Otherwise, however richly structured it is, 
UG contributes little to acquisition. It defines an orderly set of grammars as the 
candidates, but that’s all. It doesn’t help the learner to fit the candidates to the 
data. As we have seen, an enormous amount of information that is contained in 
the combination of UG and a target sentence is simply wasted by learning 
procedures that can’t unlock it. Suppose instead that we could develop a 
learning model that puts UG to work in the extraction of this information. Then 
the value of UG, and the folly of trying to tackle the task without it, might be 
more evident. In this regard, we believe the STL decoding models can help to 
provide a significant line of defense against encroaching empiricism in the 
theory of language acquisition. Nativist theories of human language will remain 
vulnerable until some UG-based learner is shown to perform well.  

 
2.6 Summary 

 
Parametric interaction and ambiguity make it difficult for a learner to 

extract from an input sample the information that it contains. Interaction and 
ambiguity occur in natural language on what is probably a grand scale, which 
renders impractical some otherwise imaginable procedures for setting 
parameters. Automatic triggering of parametric ‘switches’ is impossible, and it 
is uncertain at present what other mechanism could take its place. Note that 
these problems are not created by the learning mechanism. They are facts of the 
language domain, and no learning system, however well-designed, can make 
them go away. But some learning systems may cope with them better than 
others. Several recently proposed models have responded to the difficulties by 
giving up any attempt to read off the parametric signatures of sentences from 
their surface forms. They treat input sentences not as pointers to correct 
parameter values, but merely as the arbiters of grammar hypotheses selected in 
advance. The STL response to the failure of classical triggering is to salvage as 
much of it as possible, particularly the ability of the learner to find a licensing 
grammar for an input. Though resource limits preclude full decoding in case of 
ambiguity, even partial decoding radically reduces the scale of the task. It 
remains to be seen whether it narrows the search sufficiently to match the 
performance of human learners. This is what we want to know, and what we can 
begin to explore by means of the simulation experiments described below.  

 
3. The simulation experiments 

 
So far we have programmed 12 learning algorithms that have been proposed 

in the literature or are interesting variants of those. We have run each of them on 
the domain of more than 3,000 simplified but human-like languages. Every 
language serves as a target for every learning algorithm. A random sample of 
sentences of the target language is fed to the algorithm, which hypothesizes a 
grammar after each sentence. The trial stops when the target grammar is 
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hypothesized, or after 100,000 inputs have been presented (“time-out”). For 
each learning algorithm we run 1,000 trials on each language; this is like setting 
1,000 artificial ‘children’ to work on each language. We record the success rate, 
i.e., the percentage of trials on which the target was identified. We measure the 
average learning time, defined as the average number of input sentences a 
learner consumes before identifying the target grammar. An important combined 
measure of reliability and speed is the number of input sentences needed in 
order for 99% of trials (≡ 99% of ‘children’) to attain the target. Superset errors 
are excluded by fiat. We take it on faith that the Subset Principle will prevent 
these for all learning models (though implementing the Subset Principle faces 
surprising problems; see Fodor & Sakas, 2004). Learning counts as successful if 
the learner finds any grammar that licenses the input sample, even if it is not 
identical to the grammar that was used to generate the sample; in other words, 
weak equivalence with the target is the standard for convergence.  

 
3.1 Design of the language domain 

 
The language domain was designed to be large enough to reveal which 

models scale up well. Though tempted to add more parameters, for the present 
we have resisted expanding the domain further, in order to focus our resources 
on running the large-scale simulation tests of learning models described above. 
As the research project narrows in on the more successful models, its linguistic 
scope can be expanded. The input to learners is sentences as word strings, but all 
sentences in the domain have fully specified tree structures since this is essential 
to the functioning of the parser, which is especially important for structure-
sensitive learners like the STL. The phrase structure format in which the 
grammars are expressed is useful because it allows rapid conversion into the 
operations of an effective parsing device. This is an integral aspect of the 
learning process; as parameter settings change, the learner must be ready to 
apply the new grammar right away to incoming sentences. However, since 
parameterized grammars were promoted within Government-Binding theory 
(more recently the Minimalist Program), our grammars assign structures to 
sentences which reflect fairly standard (though simplified) GB analyses. 

There were painful decisions to be made about which linguistic phenomena 
to include and which to omit. To decide, we consulted adult speech to children 
in the CHILDES database (MacWhinney 2000).7 We gave priority to syntactic 
phenomena which occur in a high proportion of known natural languages, which 
occur often in speech directed to 2-3 year olds, pose learning problems of 
theoretical interest, have a syntactic analysis that is broadly agreed on, and/or 
have been a focus of linguistic or psycholinguistic research. Following these 
                                                 

7. Our research group has examined transcripts of adult speech to children 
learning English, French, German, Italian and Japanese. The children’s age was 
approximately 1;6 to 2;6 years. Their MLU was very approximately 2; and the 
adults’ MLU in child-directed speech was from 2.5 to 5.  
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criteria we included questions and imperatives, negation and adverbs, null 
subjects and null topics, verb movement to I and to C, preposition-stranding and 
pied piping, affix-hopping (though this hardly qualifies as widespread!), and 
Wh-movement. Table 1 lists the parameters. Their names indicate roughly what 
they do, though we lack space here to give details of how each one works in 
concert with the UG principles.  

 
Table 1.  The parameters that define the domain 

  
Parameter Default 
  
Subject Initial  [SI] yes 
Object Final  [OF] yes 
Complementizer Initial  [CI] yes 
V to I Movement  [VtoI] no 
I to C Movement  [ItoC] no 
Question Inversion (= I to C in questions only)  [Qinv]  no 
Affix Hopping  [AH] no 
Obligatory Topic (vs. optional)  [ObT] yes  
Topic Marking  [TM] no 
Wh-Movement obligatory (vs. none)  [Wh-M] none 
Pied Piping [vs. preposition stranding]  [PI] piping 
Null Subject  [NS] no 
Null Topic  [NT] no 
  

Constraints on parameter value combinations (yielding 3,072 grammars, not 213) 
 
If [+ ObT] then [- NS]  (A topic-oriented language does not have null subjects.) 
If [- ObT] then [- NT]  (A subject-oriented language does not have null topics.) 
If [+ VtoI] then [- AH]  (If verbs raise to I, no affix hopping.) 
 

 
We need to be clear about what ended up on the cutting-room floor. We 

have as yet no scrambling, since its linguistic analysis is in a somewhat unsettled 
state at present. We have no DP-internal structure, though our CHILDES 
explorations have prepared the ground for that, and no overt Case marking or 
agreement. There is no clause embedding; all sentences are degree-0 like the 
great majority of sentences directed to children at this age. These limitations 
may seem stark, but they stand as an illustration of how little can be covered by 
13 parameters.  

As yet the domain includes no ellipsis and no discourse contexts to license 
sentence fragments, though such phenomena are extremely common in the input 
to children and may be among the earliest properties they are sensitive to. Our 
sentences are syntactic and pseudo-phonological entities only, with no semantics 
or LF representations. As a final disclaimer, we can almost guarantee that any 
syntactician’s favorite analysis of the month will be absent. Our grammar does 
not employ feature checking in implementing the movement parameters 
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(Chomsky 1995 and since) and does not obey the Linear Correspondence Axiom 
of Kayne (1994 and since). It is possible that the outcomes of the simulation 
experiments would be different if the candidate grammars were more 
sophisticated in these ways. But to balance that is the fact that inaudible 
structure, undetectable to learners, cannot contribute to parameter setting; while 
if inaudible structure (such as non-lexicalized functional projections) is innate, it 
also will not engage the learning mechanism. 8  Finally, we must note some 
positive perks that our artificial learners enjoy, however unrealistically. As noted, 
lexical learning is not required of them since input sentences are realized by 
universal terminal symbols (S, Aux, O1, P, etc.). In effect, then, the learner 
knows all word categories and grammatical roles in advance. In real life such 
knowledge would be attained with some effort, perhaps through semantic boot-
strapping and/or distributional learning (Pinker 1984). On the other hand, the 
input strings our learners receive contain at present no helpful cues to syntactic 
phrase boundaries such as might result from prosodic bootstrapping (Morgan et 
al. 1987).  

 
3.2 Learning models tested 

 
The purpose of all this is to find out whether any current learning models 

really work, in a domain with a realistic amount of parametric interaction and 
parametric ambiguity. Do they work reliably? Do they work as efficiently as 
child learners, and without exceeding the sorts of memory and processing 
resources available to children? We are also interested to know whether 
parameter decoding models work better than domain-search (grammar-testing) 
models; and within decoding models, whether guessing on an ambiguous 
sentence is a better or worse strategy than discarding it and waiting for 
unambiguous input. 

In all models discussed here, learning is incremental in the sense that the 
learner hypothesizes a grammar (not necessarily different from its previous one) 
after each encounter with an input sentence. There is no memory for past inputs, 
so the data cannot be stored and mulled over later in search of generalizations. 
Except where noted, the learner is error-driven, i.e., if the currently hypothesized 
grammar Gcurrent can parse the sentence, it is retained. Changes are made only 
when Gcurrent fails. The models differ with respect to what the learner does next, 
when it has discovered that Gcurrent is wrong. The models we have tested can be 
grouped into systems that decode, such as the STL family, and grammar-testing 

                                                 
8. Structure that is not overtly realized can cause learning problems even if 

it is innate, if other elements are parameterized with respect to it. For instance, 
the many adverb-related projections of Cinque (1999) are proposed as innate, 
but parameters determine where the subject and verb end up in that structure, 
creating potentially damaging ambiguity for learners concerning how to relate 
an overt word string to the inaudible structure (see Fodor 2001). 
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learners such as the TLA of Gibson & Wexler (1994) and the Variational 
Learner of Yang (2002). 

The STLs include the Waiting-STL and a variety of Guessing-STLs. The 
Waiting-STL, known among ourselves as the ‘squeaky clean’ model, makes a 
grammar change only when it knows it is correct. It can therefore have 
confidence in the parameters it has set, and can use them to help in decoding the 
input for setting subsequent parameters.9 In order to be able to do this it must be 
able to recognize and discard input that is parametrically ambiguous. This is 
possible, despite our assumption that the human parsing mechanism does not 
have the resources to parallel process all analyses of an ambiguous sentence. 
The human sentence parsing routines (on most standard assumptions) can tell 
when a choice point arises in the parse, signifying a local ambiguity in the 
analysis. To be on the safe side, the Waiting-STL treats every such local 
ambiguity as if it were a full ambiguity, and it refrains from setting parameters 
on the evidence of any part of the sentence that follows the choice point (Fodor 
1998a). Thus it tends to overreact to ambiguity, but it never engages in 
guesswork. This learner needs unambiguous triggers to learn from, but these 
may be in short supply in natural language. The question of interest, therefore, is 
whether there is enough unambiguous input for all languages to be learnable. By 
contrast, the Guessing-STLs can learn from parametrically ambiguous input, 
because when they find a choice-point in the parse they simply guess between 
the analyses (Fodor 1998b). The Guessing-STLs differ from each other with 
respect to the specific principles that guide their guesses. Consider the parser at 
the point at which it has discovered that the current grammar cannot provide a 
full analysis of the sentence. It needs to pull in a new parameter value treelet to 
complete the parse tree. Suppose that more than one of the treelets that UG 
makes available would do the job. The Any Parse strategy tells the parser to 
choose between them at random. The Minimal Connections strategy picks the 
parameter value that gives the simplest tree (in accord with standard parsing 
principles such as Minimal Attachment and Late Closure). The Least Null 
Terminals strategy picks the parse with the fewest empty categories (equivalent 
to the Minimal Chain Principle for parsing). The Nearest Grammar strategy 
picks the grammar that differs least from Gcurrent.  

                                                 
9. The Waiting-STL’s confidence in unambiguous triggers does not allow 

for the possibility of ungrammatical input, or grammatical input that is 
misconstrued. Since this does occur, however infrequently, any such 
deterministic (non-revising) learner is almost certainly too brittle to survive in 
the real world. However, learning models like the Waiting-STL that don’t rely 
on guessing are of considerable theoretical interest, since children are often 
regarded (though perhaps only as an idealization) as setting parameters 
accurately without engaging in trial and error. Against this must be set the 
evidence from language change, and some psycholinguistic experiments, that 
acquisition errors occur. 
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Among grammar-testing learners, the TLA’s properties are well-known. It 
responds to the failure of Gcurrent on an input sentence by changing the value of 
any one parameter, trying out the new grammar on the sentence and adopting it 
if the parse is successful. If the parse fails, the TLA retains its previous 
hypothesis. The restriction to one changed parameter value is the Single Value 
Constraint. Not adopting a new grammar if it can’t parse the current input is 
enforced by the Greediness Constraint. A non-greedy version of the TLA was 
considered by Berwick & Niyogi (1996). This dispenses with the parse test, and 
simply adopts the new grammar. Berwick & Niyogi also contemplated a TLA 
without the Single Value Constraint. When Gcurrent fails, this tries out any other 
grammar and adopts it if it passes the parse test. There are also grammar-testing 
models which, unlike the TLA, have memory for the prior success or failure of 
each of the parameter values. In Yang’s Variational Learner, a parameter value 
is strengthened if it participates in a grammar that successfully parsed an input 
sentence, and is weakened if it was in a grammar that failed to parse an input. 
Note that this reinforcement regime is only approximate because of the kind of 
interaction that Clark’s work has drawn attention to. A good parameter value in 
an otherwise incorrect grammar is punished, and a wrong parameter value is 
rewarded if it gets a free ride in a grammar that is otherwise correct and doesn’t 
need that value in order to license the current sentence. The Variational Learner 
is not error-driven. In a sense it has no Gcurrent, but instead a graded success 
rating for each parameter. In selecting a grammar to try out on the next sentence 
it chooses parameter values with probability proportional to their current success 
weights. We have considered also an error-driven variant of this model (Sakas & 
Nishimoto, 2002) which is like Yang’s original but has a Gcurrent consisting of the 
currently more successful value of each parameter. Only if that fails does the 
error-driven Variational Learner shift to a different grammar, selected on the 
basis of probabilities as above. Results for these Variational Learners are not 
included in the present paper; see Sakas & Nishimoto (2002) for relevant data. 

Our experiments also include two models that serve as benchmarks against 
which to compare the others. These are not proposed as psychologically realistic 
models. One is too powerful to model human learning, and the other is too weak. 
The powerful one is the Strong-STL. It parallel-parses an input sentence, finds 
every grammar that could license it, and adopts all and only the parameter 
values that those grammars share, which are bound to be correct. The model that 
is too weak is an error-driven system similar to the TLA except that when Gcurrent 
fails it adopts any other grammar at random. Thus it samples the domain without 
any systematic search strategy. Though not worth considering as a psychological 
model, it is of interest because Berwick & Niyogi (1996) found this error-driven 
random learner to be superior to the TLA under certain circumstances. 

 
3.3. Results 

 
We note first some previous simulation results in the literature. Most relate 

to the TLA. Berwick & Niyogi (1996) found that in the Gibson & Wexler 3-
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parameter domain, the TLA converged on the target more slowly than an error-
driven random guessing learner. The TLA also fails to converge on the target in 
many cases, due to the problem of local maxima, discovered by Gibson & 
Wexler and discussed further by Berwick & Niyogi. Sakas (2000) reported, on 
the other hand, that the TLA performs better than the random model on strongly 
smooth domains (i.e., domains in which similar grammars yield similar surface 
languages, unlike what is thought to be typical of natural language). In an 
investigation of how well the TLA scales up to a more realistic domain size, 
Kohl (1999) reported a TLA failure rate of 95.4% on her domain of 2,304 
languages. Kohl found also that no default (starting) grammar could avoid TLA 
learning failures on her domain; the best starting grammar succeeded only 43%  
of the time. She also observed that some TLA-unlearnable languages are quite 
natural, e.g., Swedish-type settings. As she noted, it would count in favor of a 
learning model if it failed on languages that, while apparently consistent with 
UG, are not attested. Concerning the Waiting-STL, Bertolo et al. (1997) noted 
that it is paralyzed by weakly equivalent grammars, i.e., distinct grammars 
which license the same set of surface sentences (word strings). Those sentences 
are parametrically ambiguous and so must all be discarded by the Waiting-STL, 
leaving it with no data at all for setting parameters. These findings are the 
background for our experiments, some of whose outcomes are more cheerful. 

Table 2 shows failure rates and speed of learning for 10 different learning 
algorithms. Consider the failure rates first. Given the reliability with which 
children acquire the language(s) they are exposed to, any failure rate above zero 
is a disqualification. It might be objected that a learning model’s failures are not 
inappropriate, but correspond to children with unexplained language deficits not 
associated with detectable neurological damage or other known factors. But 
failure rates of 70% or 80% clearly cannot be excused in such fashion. The TLA 
is ruled out on this ground, confirming Kohl’s findings, and so are three STL 
variants. The failure of the Waiting-STL answers one of our questions above. It 
suggests that this domain does not contain a sufficient number of unambiguous 
triggers to set all parameters for all languages without resort to trial and error. 
This might change as future research adds more distinctive sentence types to the 
domain (see section 2.2). However, the fact that the relatively simple sentences 
of this domain cannot be learned by the waiting strategy suggests that even if 
learning were ultimately successful, it would get off to a very slow start. One 
source of hope is still open for this ‘squeaky clean’ non-guessing learner. We 
have not yet implemented the important distinction between ambiguous 
parameters and irrelevant parameters. The former participate in the derivation of 
a sentence and are successful whichever value they take; the latter do not 
participate in the derivation of the sentence at all. For example, a sentence 
consisting of just a subject and a verb is ambiguously derived, as Gibson & 
Wexler observed, by a subject-initial parameter setting, or by a subject-final 
setting plus the positive setting of the verb-second parameter. By contrast, that 
sentence does not need either setting of the parameter that orders the verb and 
object within VP; this parameter is simply irrelevant to the sentence. So is the 
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parameter that controls preposition stranding versus pied piping, for a sentence 
with no XP movement or no prepositional phrase. In our results to date, 
parametric irrelevance is lumped together with parametric ambiguity; both cause 
a sentence to be discarded by the Waiting-STL without setting any parameters. 
This is clearly too drastic, and gives an unduly low estimate of the efficacy of an 
ambiguity-avoidance strategy. It remains to be seen how far the failure rate will 
fall when these cases are no longer counted against the waiting model. However, 
the improvement would have to be substantial if it is to rescue this approach. On 
current evidence, an obsession with perfect accuracy seems unlikely to be the 
best technique for learning a natural language. See Fodor (1998b) for other 
reasons for doubting the wisdom of such a strategy.  

 
Table 2.  Performance of 10 learning algorithms 

Algorithm % failure 
rate 

# inputs needed 
(99% of trials)

 

# inputs needed 
(average) 

Error-driven random  0  16,663  3,589 
TLA original  88  16,990   961 
TLA without Greediness  0  19,181  4,110 
TLA without SVC  0  67,896  1,273 
Strong-STL  74  170  26 
Waiting-STL  75  176  28 
 

Guessing-STLs    
     Any Parse  0  1,486  166 
     Minimal Connections  0  1,923  197 
     Least Null Terminals  0  1,412  160 
     Nearest Grammar  80  180  30 
 
The failure rate of the Strong-STL may be somewhat exaggerated, as in the 

case of the Waiting-STL. But taken at face value it reinforces the assessment 
that natural languages in at least some cases provide too little information to 
enable an incremental learner to establish all parameter values without resort to 
guessing. The Strong-STL is of interest because it does as well as any error-
avoidance learner could. It can learn not only from unambiguous triggers but 
also from the unambiguous aspects of ambiguous triggers. For instance, if one 
sentence had a hundred distinct analyses but they all included Wh-movement, 
the Strong-STL could definitively adopt the positive value of the Wh-movement 
parameter. Yet even this power, it seems, does not suffice for reliable learning. 
The table shows that both the Strong-STL (which is not psychologically 
feasible) and the Waiting-STL (which is) are extremely fast learners when they 
are not hung up by ambiguity, yet ambiguity takes a serious toll: both models 
fail more often than they succeed. But these summary data hide an interesting 
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difference between them. If we look at the time course of parameter setting 
within learning trials, we find that the Strong-STL (which does full parallel 
parsing) is considerably faster than the Waiting-STL (which does only serial 
parsing). For instance: For the language with French-type parameter settings 
(see section 3.4), after receiving 10 sentences the Strong-STL had set on average 
9 parameters, while the Waiting-STL had set none. Clearly, the Strong-STL is 
much more efficient at extracting information from input. But it didn’t finish the 
task any faster. Both algorithms took an average of 61 sentences to converge on 
the target. This is because after its rapid start, the Strong-STL hit a point where 
it couldn’t advance for a long time. This hang-up must have been caused by a 
paucity of information in the input, not by an inability to extract it. In other 
words, this difficulty is inherent in the language domain, not the learning 
procedure, and this is an indication that human resources are not the limiting 
condition on language acquisition. Rather (contrary to all functional 
explanations), it may be that natural language design is not cooperative with any 
incremental learning algorithm, however powerful.  

The Nearest Grammar version of the Guessing-STL also fails often, but for 
a different reason. The cause in this case, we believe, is not primarily ambiguity 
but something more like what causes local maxima in the TLA. The Nearest 
Grammar strategy is a conservative force, not unlike the SVC. The grammar is 
altered as little as possible at each step, in order to retain the fruits of past 
learning while accommodating new input. But excessive conservatism can keep 
the learner cycling through the same small set of grammars; even if the target is 
nearby, it is unreachable. The simulation data reinforces here a finding familiar 
in the machine learning literature: that exploration is sometimes a greater virtue 
than conservatism. 

Consider learning rates now, for the models that succeed reliably enough to 
be worth considering. The error-driven random guessing system and the TLA 
without Greediness are quite similar, which shows how little work the SVC does 
by itself. By mathematical necessity, the random guess model requires 
approximately as many inputs on average as there are languages in the domain. 
The TLA with SVC but without Greediness does not do better than that. The 
TLA with Greediness but without the SVC does distinctly worse than that. Some 
Guessing-STLs (though not all) learn approximately 10 times faster than the 
TLA-related models. Thus, the ability to decode the parametric signatures of 
sentences lifts the learner into a higher level of performance. The three 
successful STL guessing strategies have quite similar outcomes, though two 
represent familiar parsing strategies while the other is random. The similarity 
may be due to the fact that the sentence structures in our domain are simple and 
fairly uniform, so the different selection strategies may not get a hold on them.  

To summarize: The data show that not all models scale up well. The error-
driven random guess model provides a baseline. It is slow, its efficiency being a 
simple function of the number of languages in the domain, which we flagged in 
section 2.4 as a danger sign. The TLA variants that reliably converge are no 
faster than the random guess baseline. The original TLA is also slow and fails to 
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converge in many cases, as reported by Kohl. The ‘squeaky-clean’ decoding 
models (Strong-STL and Waiting-STL) fail often, presumably for lack of 
unambiguous triggers. Decoding models which guess in case of ambiguity 
emerge as the most efficient. They are tolerably fast and are free of errors. For 
these Guessing-STLs, on-line parsing strategies appear to make good learning 
strategies. Since they’re not notably better than random guessing this will need 
to be confirmed on more elaborate domains in future, but it is encouraging  for 
the STL approach, which relies on the parser to sift through potential parameter 
values on-line to find ones that work. The data indicate that conservatism can 
increase learning speed but causes many errors even when grafted into a 
decoding model.  

A fair conclusion overall is that learning-by-parsing fulfills its promise. (For 
other work that relates learning and parsing see Berwick, 1985, Seidenberg & 
MacDonald, 1999, and references there.) The STL approach sees learning as a 
natural consequence of a child’s desire to comprehend sentences s/he hears. The 
child’s parsing routines, like an adult’s, seek out aspects of the grammar that 
allow incoming words to be combined into a legitimate syntactic tree. The only 
difference for children is that the parser must be prepared on occasion to reach 
out beyond the current grammar and make use of new parameter values 
(treelets). This is an extremely natural psychological mechanism, and the 
simulation results show that it outperforms other models on a combination of 
reliability and learning speed. It is gratifying to discover that as computational 
models gain in psychological verisimilitude they become more, rather then less, 
efficient. It suggests we may be on the right track at last.  

 
3.4. Further investigations: Comparing languages 

 
Now that we have a workable learning strategy, we can make use of it to 

investigate other questions of interest. Holding the learner constant, we can ask 
whether some languages are easier than others; whether default parameter values 
help or hinder acquisition; whether overt morphological markings facilitate the 
setting of syntactic parameters; and so forth.  

 
Table 3. Cross-language comparisons, for the Minimal Connections STL 

 
Guessing-STLMinConn # inputs needed 

(99% of trials)
# inputs needed 

(average) 
# default 

parameter values 

 ‘Japanese’   87  21  8 
 ‘French’  99  22  10 
 ‘German’  727  147  7 
 ‘English’   1,549  357  8 
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‘Japanese’ and ‘French’ are acquired more rapidly than the others, and 
indeed more rapidly than most other languages in the domain, since the number 
of inputs consumed in acquiring them is considerably lower than the average 
across all languages in Table 2. ‘English’ is the slowest of the four, but it is 
squarely average for the domain. We don’t know whether there is empirical 
support for differences in ease of acquisition among real languages. Observed 
differences might be attributable to cultural differences rather than grammatical 
ones. But it can be asked what makes a language easier in this bare learning 
situation where other factors do not intrude. The data are not predicted by how 
many of the target parameter settings are defaults. We suspect, though we have 
not yet confirmed this, that what matters most is parametric ambiguity, either in 
terms of the degree of overlap with neighboring languages, or as a lack of 
informative triggers. As noted above, it would be of interest to know whether 
the more difficult language types for learners are those not used by human 
societies. That is not inconsistent with our data, since the subject-final languages 
were learned more slowly on average than the humanly more frequent subject-
initial languages (1127 versus 716 sentences for 99% convergence). But there 
are many reasons to be considered for why that might be so. 

 
4. Sensitivity to input properties 

 
Our simulation experiments test the ability of the learning model to extract 

grammar-relevant information from the perceptible properties of the input 
language sample. Learning efficiency should therefore be sensitive to the 
number and kind of distinctions that are overtly marked in the surface forms of 
sentences, though it is also dependent on the amount and kind of information 
that UG supplies; indeed, the interaction between these is what we see as the 
heart of UG-based learning. There is considerable theoretical interest in finding 
out to what extent UG-based parameter setting is input-paced (e.g., Evers & van 
Kampen 2001). From our experiments we can begin to create a profile of what 
input-paced learning looks like. If this does not match the acquisition sequence 
of child learners, that could suggest biological timing, such as late maturation of 
some parameters, or input filters of some kind.  

With Carrie Crowther, we have begun a series of experiments in which, 
without altering the underlying grammars in any way, we manipulate the 
informativeness of the input sample by varying which syntactically relevant 
properties have overt ‘phonological’ realization. We can add to the original 
sentences some morphological markings of syntactic features such as Case, 
agreement, and finiteness to see how these affect the rate of learning. In real-life 
language learning, some languages provide these markers but some do not. Even 
for languages that do, a child must acquire them before getting any benefit from 
them. It seems plausible that they speed up syntax acquisition, but perhaps 
instead the morphological learning involved just creates more work which slows 
everything down. Another interesting addition to input sentences is the 
phonological realization of syntactic phrase boundaries provided by prosodic 
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phrasing. Christophe et al. (2003) have shown that the prosodic patterns 
associated with a head-initial and a head-final language can be discriminated by 
infants at a very early pre-syntactic stage. Morgan et al. (1987) demonstrated the 
benefit of prosodic phrasing in the learning of simple constructed languages by 
adults. We can follow up these findings with simulation experiments on our 
language domain. The relation between syntactic and prosodic boundaries is 
imperfect because prosodic phrasing is affected by other factors such as phrase 
length and speaking rate. But even partial prosodic cues could help to 
disambiguate between competing syntactic tree structures for an input word 
string, which would constrain the grammar choices more tightly and improve 
learning. Prosody can also provide cues to illocutionary force, so learners can 
avoid confusing the syntactic characteristics of questions, declaratives and 
imperatives. Illocutionary force is often recognizable also from the semantics or 
the pragmatics of the discourse. Our language domain, without semantics or 
discourse contexts, originally provided no markers of illocutionary force except 
a KA complementizer for otherwise unmarked questions. A convenient 
substitute, for the purposes of our experiments, is the use of ‘audible’ features 
such as [ILLOC DEC] or [ILLOC IMP].10 

Our first experiment compared learning rates when the finiteness feature on 
verbs was audible versus inaudible. Finiteness is predictable in our domain: UG 
requires the highest verb in every sentence to be finite and all others to be non-
finite. (Recall that there are no embedded clauses.) However, the highest verb in 
an imperative sentence is obligatorily a phonologically null auxiliary, which 
means that the highest audible verb in an imperative is non-finite. Consequently, 
overt [+/-FIN] markings can distinguish declaratives from imperatives. This can 
be valuable, especially when no other cues to illocutary force are available (see 
above). In particular, a [-FIN] marking could head off an error in setting the null 
subject [NS] parameter. Imperatives have a null subject universally, even in [-
NS] languages; the parameter is relevant only to declaratives and questions. So 
if a learner of a [-NS] language were to misinterpret an imperative sentence as a 
declarative, it would mis-set the parameter to [+NS]. Since null subjects are 
mutually exclusive with null topics in this domain, and null topics imply 
obligatory topicalization, this mistake could initiate a cascade of other errors. It 
is a reasonable prediction, therefore, that although finiteness is not itself 
parameterized, overt marking of finiteness could speed the correct setting of 
other parameters.  

The experimental result showed no such improvement. This seems baffling 
until it is noted that the Subset Principle already precludes the potential [+NS] 
error. The Subset Principle requires a learner to treat a sentence that is 
                                                 

10. The form of these notations is not important; other representations 
would do equally well. For instance, our universal grammar has a 
complementizer PLEASE for imperatives, which is silent and doing no work at 
present. We could have made this audible, and extended the KA complementizer 
to all questions, leaving unmarked sentences as declaratives.  
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ambiguous between imperative and declarative as an imperative. It does so 
because in our domain (which lacks expletives and has no ±pronominal contrast) 
the [NS] parameter is a subset/superset parameter. Setting it to the superset 
[+NS] value is always to be avoided if there is an alternative way of licensing 
the input. Since the imperative analysis doesn’t require any marked parameter 
settings, it is preferred. This works for [-NS] languages, and it creates no 
problem for a genuine [+NS] target language since the correct setting will be 
triggered by other sentences which couldn’t be imperative (e.g., sentences with 
an overt auxiliary or KA marking or a [+WH] element). A moral we have drawn 
from this little experiment is that we weren’t smart enough to anticipate the 
behavior of the language domain even though we constructed it brick by brick 
ourselves. The reasoning failure was ours, but perhaps it is a hint that any 
deduction about interactions within a complex domain deserves to be 
empirically checked. Checking it by simulation is the closest we can approach to 
checking it against the real natural language domain, whose properties we don’t 
control and don’t fully know. 

Our next experiment assessed the benefits of providing direct information 
about illocutionary force, in the form of [ILLOC] feature specifications. Some 
morphological marking of illocution occurs in natural languages, such as the 
interrogative complementizers -ka and -no in Japanese. Movement and deletion 
operations also distinguish illocutions, as in English. Prosodic marking is also 
common. Semantically, a Wh-constituent indicates a question. Prior to learning 
these form differences, we suppose that children tell whether an input is an 
imperative, declarative or question on the basis of the semantic and 
conversational context. Our [ILLOC] features can be regarded as a shorthand for 
this semantic knowledge. The illocutionary type of a sentence is relevant to 
several parametric phenomena (in addition to null subjects, as above), such as 
the difference between languages in which the finite verb always raises from I to 
C, like German, and languages where it does so only in interrogatives, like 
English. In terms of our parameters, this presents itself as a choice between 
[+ItoC] and [+Qinv] when the learner encounters a question with its verb in C. 
The [+ItoC] setting subsumes the [+Qinv] setting in the sense that the movement 
operation is the same in both but it applies in a broader versus a narrower 
context. This does not create a superset situation, because the movement is not 
optional; a language with only [+Qinv] has declarative sentences with the finite 
verb in I (or lower) that do not occur in a [+ItoC] language. So an incorrect 
choice would not be an incorrigible error. On the other hand, it could misdirect 
the learner for a while, and the Subset Principle can’t step in to put it right. So 
again, it seemed reasonable to predict that learning becomes speedier when overt 
information is supplied. In this case, too, we were wrong. The results showed 
that when [ILLOC] is audible, learning is slower. How could this be?  

We realized that the learner without audible [ILLOC] had an easier task. 
Without [ILLOC] there is a set of weakly equivalent grammars compatible with 
the input sample, such that hypothesizing any one of them counts as 
convergence on the target. (This corresponds to speakers having mental 
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grammars which differ in ways that don’t affect their observable language: an I-
language difference with no E-language difference.) But with [ILLOC] features 
in sentences these grammars are no longer equivalent, so the learner must 
identify just one correct grammar. The equivalences don’t involve just the 
[Qinv] and [ItoC] parameters discussed above, but most particularly the 
obligatory topic parameter. When illocutionary force marking is absent, [+ObT] 
languages and [–ObT] languages are sometimes surface identical (when other 
parameters are set the same way in both). Suppose the input sample was 
generated by the [-ObT] value. The [ObT] parameter applies to declarative 
sentences; imperatives and yes/no questions universally have no topic. The 
subset value [+ObT] requires all declaratives to have a topic, while [-ObT] also 
licenses declaratives with no topic. However, without ILLOC information, even 
[+ObT] could license all the target sentences, if declaratives without topics can 
be analyzed away as being imperatives or yes/no questions (i.e., when this is not 
ruled out by sentence properties such as KA or by the Subset Principle). In such 
cases the learner can converge regardless of which value of the [ObT] parameter 
it adopts. Of course, this would be a very strange ‘child’ who gets the word 
strings right but mistakes declaratives for questions. So these data underscore 
the importance of upgrading language domains for simulation research to 
include representations of sentence meaning. Real children learn not just the 
forms of sentences but pairings of form and meaning. See Villavicencio (2000), 
where LF representations are associated with surface syntactic structures.   

Consider now a situation in which illocutionary force is known. Learning 
becomes more difficult because the learner can’t get away with mixing up 
declarative and non-declarative sentences. The [-ObT] target language now 
includes some topicless sentences that are undeniably declarative, so the learner 
must posit [-ObT]; the default value [+ObT] will not do. With [ILLOC], then, 
the target is less broad and the learner must be more precise. But as long as the 
input provides the necessary information, why should that be hard? The answer 
is that the [-ObT] setting is particularly difficult to recognize. It is disfavored by 
the Subset Principle, so it needs triggers; but many of its potential triggers are 
ambiguous. A trigger would be any declarative sentence without a topic. 
Consider a verb-initial declarative. Since topics are sentence-initial (in Spec,CP 
which universally precedes C0), this would seem to be a topicless sentence. But 
of course that is not a safe conclusion if the language might, for all the learner 
now knows, be a null topic language in which a topic can be present but 
inaudible. The Subset Principle would give [-ObT] the benefit of the doubt here 
(see below). But it would vote against [-ObT] in the case of declaratives with 
just an overt subject or object preceding the verb. These too are unreliable 
triggers for [-ObT]. Though the subject or object might be in its underlying 
position, it might instead have undergone string-vacuous topicalization (where 
there is no I-toC raising). Furthermore, no sentence with an initial Wh-phrase 
can be a trigger for [-ObT], because a fronted Wh-phrase occupies the Spec,CP 
position and masks whether there would otherwise have been a topic in that 
position. Evidence that the language has null subjects would be excellent 
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evidence for [-ObT], since our UG prohibits [+NS] for topic-oriented languages, 
which it equates with [+ObT] languages. But the triggers for [+NS] are 
themselves not always unambiguous. All in all, therefore, reliable triggers for [-
ObT] are rare. The Guessing-STLMinConn did eventually muddle its way through 
to the correct parameter settings for the ILLOC-marked sentences, but it was 
slow. The extra input information gave greater semantic precision, but in terms 
of learning speed it did more harm than good.  

A third experiment examined the usefulness of a cue that could distinguish 
between the presence of a null topic and the absence of any topic. As noted 
above, the difference between these can be important for setting other 
parameters. In this experiment we made verb subcategorization information 
available to the learner. This is something that children must normally learn. We 
suppose they do so by bootstrapping from verb meaning or tallying 
distributional contexts – processes which are not included in our simulations. 
We simply supplied this information to the learning algorithm in the form of 
[SUBCAT] features, so that we could investigate the syntactic consequences of 
subcategory knowledge.  

It might seem that every sentence displays a subcategorization of its verb, 
but this is not so if arguments can be missing. For learners who don’t yet know 
the relevant parameter values, many sentences are ambiguous between an 
analysis in which an argument was present but deleted (phonologically null), 
and an analysis in which no such argument was present at all. In our domain the 
only way to ‘delete’ a constituent is via the positive value of the null topic 
parameter, [+NT], which allows any element to be null if it is in topic position. 
A null topic, like any other topic, is associated with a trace elsewhere in the 
sentence. It does not appear overtly in either position. If it is an optional element, 
such as an adjunct, the word string gives the learner no indication of its presence 
in the tree. 

Consider a verb-initial declarative sentence. This clearly has no overt topic. 
The learner is faced with a choice between two marked parameter settings: [-
ObT] or [+NT]. That the marked value of the [ObT] parameter is [-ObT] may 
seem perverse linguistically, but it is mandated by the Subset Principle, which 
must always favor obligatory over optional phenomena. For the same reason, the 
marked value for null topic is [+NT]. Of interest here is that the Subset Principle 
selects between the two parameters. It requires the learner to adopt [-ObT] rather 
than [+NT], since the latter generates a more inclusive language. [+NT] licenses 
sentences with an indirect object but no direct object (e.g., Subj Verb O2), and in 
a preposition-stranding language it licenses sentences with a preposition but no 
O3 that could be its object (e.g., Subj Verb P Adv). Neither of these is normally 
permitted11, and neither can occur as a result of topicalization being optional, i.e., 
[-ObT]. So these sentences would be the triggers for setting [+NT]. But they are 
                                                 

11. This presupposes that prepositions are distinguishable from particles. In 
our domain there are no particles (or intransitive prepositions), but in natural 
languages this is another ambiguity that the learner would have to resolve. 
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not abundant. Especially in a pied-piping language, the learner might wait a long 
time before hearing evidence of [+NT]. Verb SUBCAT information could 
supplement this meager evidence. Only [+NT] could account for the surface 
absence of the direct object of a transitive verb, the indirect object of a 
ditransitive verb, the locative argument of a verb like put, and so on. Thus, 
knowledge of obligatory verb-argument structures could be valuable to the 
learner for making the fine distinction between null constituents and non-
existent ones.12  We predicted, therefore, that learning would be faster when 
verbs were supplied with SUBCAT features. And in this case the data did 
support the prediction. There were no unforeseen interactions with other 
parameters, no damaging side-effects. The subcategory information was doing 
some real work.  

To summarize: Enriching the input has complex effects on learning. Richer 
input is beneficial if it provides information about something that must be 
learned anyway, and especially if other cues are scarce. Richer input can be a 
hindrance if it creates a distinction that otherwise could have been ignored. The 
specific outcomes of these experiments obviously depend on the properties of 
the particular domain, so they cannot be generalized as they stand. But the 
domain can be tailored as necessary to issues of interest, so other investigations 
are possible. The ultimate interest of studies like these is the light they can shed 
on child language acquisition. We can accumulate case studies of learning with 
and without the aid of various cues in the input, we can vary the frequency of 
these cues, and we can see how the course of learning differs as the weight of 
decision-making falls more on UG or more on evidence in the input. Eventually 
we hope to be able to compare these data with the course that children take and 
draw some conclusions for currently debated issues such as poverty or non-
poverty of the stimulus, whether sensitivity to frequency statistics in the input 
implies lack of UG guidance, and so forth. We can’t do this yet, but we do 
believe that proponents of UG-based learning must face up to these difficult 
matters as soon as possible. 

 
5. Future directions 

 

                                                 
12. This is part of a more interesting interplay between lexical and syntactic 

learning. For instance, SUBCAT information could help learners identify trace 
positions for Wh-movement. Once Wh-movement is acquired, a learner should 
be able to tell that a novel verb is transitive even if it has no object in the VP, if 
there is a fronted Wh-NP and no other possible position for its trace. What we 
have left out of the discussion above is the question of whether a verb previously 
encountered as transitive, but now occurring without an overt object, would be 
preferentially construed as having a null object or as being optionally 
intransitive. Is it the syntax or the lexicon that is expanded? Is it semantics that 
makes this decision, or a general learning principle? 
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These comparisons of learning models and input properties are just the 
beginning of what the language domain enables us to do.13 Next on our agenda 
are experiments to assess how vulnerable different learning models are to 
‘noisy’ input. We will re-run the simulations with 1 sentence in every 5, or every 
10, or every 100, drawn at random from a language other than the target, either 
from a single language or from different ones. We will also investigate a version 
of the ‘starting small’ hypothesis (Newport, 1990; Elman, 1993), by seeing how 
much facilitation results from presenting mostly short sentences early on. And 
we will use our cross-linguistic survey of the sentence patterns in child-directed 
speech to find out how much facilitation (if any) derives from the exact mix of 
sentence types in the sample of language that children hear (cf. Newport, 1977; 
Yang, 2002). 

Continuing the evaluation of learning models, we are now adding 
connectionist and statistical learners to see how they fare with respect to speed 
and reliability. Allowance must be made for the fact that they have a far more 
substantial task to do than learners that are already in possession of large parts of 
the grammar from the outset, so some careful thought must go into how the 
comparisons can be fairly drawn. We also plan to refine the STL models. In 
particular we are eager to add the STL variety that we believe comes closest to 
the psychological truth. This is the “Parse Naturally” STL of Fodor (1998b), 
which employs nothing but the standard adult parsing strategies and an innate 
lexicon of parameter value treelets whose weights are continuously adjusted (not 
unlike the error-driven version of Yang’s Variational Learner sketched above).  

We also plan to make use of the time-course data gathered from every 
learning trial (each of 1,000 ‘children’ for each of 3,072 target languages), in 
two ways. First, it can be used for a more fine-grained evaluation of learning 
models with respect to whether they set the parameters in a realistic sequence 
which matches that of children. Second, a massive comparison of all of these 
time courses could reveal whether there is an optimal sequence for setting 
parameters. We can contrast sequences which result in very rapid convergence 
on the target with those which are the slowest. If there are some sequences 
associated with notably superior performance, this could reinforce learning 
models that assume an innately prescribed schedule (e.g., Dresher, 1999; Roeper 
& de Villiers, 1992).  

This will keep us busy for a while to come. But other ideas are very 
welcome. The language domain is accessible at www.colag.cs.hunter.cuny.edu 
                                                 

13. There are things this project is not equipped to do, the most notable 
being language production. What do learners say when they haven’t fully 
mastered the grammar? We can examine the sentences generated by a learner’s 
incorrect intermediate grammars. Some are correct sentences of the target 
language, some are not, and some target sentences are missing. But the non-
target sentences don’t at all resemble baby-talk, e.g. the artificial equivalent of 
Me has Mary not kissed why?, or later on: Whom must not take candy from? 
Clearly we are missing some factors that shape children’s output. 
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and we will be happy to provide assistance in using it to explore other 
hypotheses of interest. As we have begun to discover, the outcomes are not 
always as anticipated.  
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