
–––– -Piatell-c-drv Piatelli (Typeset by SPi)  of  June ,  :

OUP UNCORRECTED PROOF – FIRST PROOF, //, SPi



Children’s Acquisition of Syntax:
Simple Models are Too Simple∗

XUAN-NGA CAO KAM AND JANET DEAN FOD OR

. Introduction

.. Studying early syntax acquisition

There has been a renewal of interest in statistical analysis as a foundation for syntax
acquisition by children. At issue is how much syntactic structure children could
induce from the word sequences they hear. This factors into three more specific
questions: How much structure-relevant information do word strings contain? What
kinds of computation could extract that information? Are pre-school children capable
of those kinds of computation? These points are currently being addressed from
complementary perspectives in psycholinguistics and computational linguistics.

Experimental studies present a learning device with a sample of sentences from
a target language, and assess what aspects of the target syntax are acquired. The
learning device may be a child, an adult, or a computer program. The language may be
artificial or (part of) a real natural language. Each of these combinations of learner and
language is responsive to one of the methodological challenges in research on early
syntax acquisition. In the research reported here, the language was natural but the
learner was artificial. We explain below why we regard this combination as especially
fruitful.

Testing infants has the undeniable advantage that the psychological resources
(attention, memory, computational capacity) of the subjects match the resources avail-
able for real-life primary language acquisition. However, the input language in child
studies is typically artificial, because it is improper to tamper with the acquisition
of the subjects’ native language, and also to control across subjects exactly what input
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they receive. In order for an infant to acquire properties of an artificial language in the
span of an experimental session, the language must also be very simple. See Gómez
and Gerken () for a classic example.

Adult subjects can undergo more extensive and rigorous testing than infants, pro-
viding more data in less time. But again, the input language must be artificial and
fairly simple for purposes of experimental control and uniformity across subjects (e.g.,
Thompson and Newport ). With adult subjects, moreover, it is not possible to
exclude from the experimental context any expectations or biases they may have due
to their existing knowledge of a natural language. For example, Takahashi and Lidz
() found that the adult subjects in their study respected a constituency constraint
on movement in the test phase, even when the training sample contained no move-
ment constructions. Although of considerable interest, this is prey to uncertainties
similar to studies of ‘normal’ adult L acquisition: was the sensitivity of movement to
constituency due to an innate bias, or to analogy or transfer from the subject’s L?

Artificial language studies, with children or adults, provide no insight into what
could be learned from word strings in the absence of any innate biases or prior lin-
guistic experience. But this is the issue that has animated many recent computational
studies of language acquisition, motivated in large part by a conjecture that language
acquisition may not, after all, require any innate substrate, despite long-standing
assumptions to the contrary by many linguists and psycholinguists. The focus of these
computational studies is on pure distributional learning, relying solely on the infor-
mation that is carried by regularities in the sequences of words. For investigating this,
only an artificial learner will do. If the learning system is an algorithm implemented
in a computer program, there is complete certainty as to whether, before exposure to
the target input, it is innocent of linguistic knowledge of any kind (as in the model
we discuss below), or whether it is equipped with certain biases concerning what
language structure is like, such as the ‘priors’ of Bayesian learning models (Perfors
et al., ) or some version of Universal Grammar as espoused by many linguists.

Another advantage of artificial learners is that the target language can be a real
natural language, or a substantial part thereof. Since the learning algorithm has no
L, there are no concerns about transfer. More complex phenomena can be examined
because there is little constraint on the extent of the training corpus or how many
repetitions of it the learner is exposed to. Moreover, not only is the presence/absence
of prior knowledge under the control of the experimenter, but so too are the com-
putational sophistication and resources of the learning device. So this approach
can provide systematic information concerning what types of computational sys-
tem can extract what types of information from input data. We illustrate this in
section . below.

 While children make use of prosodic, morphological and semantic properties of their input (Morgan
), these sources of information are set aside in many computational studies in order to isolate effects
of co-occurrence and distribution of words.
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The artificial learner approach has its disadvantages too, especially uncertainty as to
which experimental outcomes have bearing on human native language acquisition. In
compensation, however, a wide range of different algorithms can be fairly effortlessly
tested, and informative comparisons can be drawn between them. The hope is that
it may one day be possible to locate children’s learning resources and achievements
somewhere within that terrain, which could then provide guidance concerning the
types of mental computation infants must be engaging in as they pick up the facts of
their language from what they hear.

.. Transitional probabilities as a basis for syntax acquisition

The specific learning models we discuss here are founded on transitional probabili-
ties. It has been demonstrated that infants are sensitive to transitional probabilities
between syllabic units in an artificial language, and can use them to segment a speech
stream into word-like units (Saffran et al. ). For syntax acquisition, what is
relevant is transitional probabilities between one word and the next. Infant studies
have documented sensitivity to between-word transitional probabilities which afford
information about word order patterns and sentence structure (Gómez and Gerken
; Saffran and Wilson ). The type of learning model discussed below puts
the word-level transitional probabilities to work by integrating them into probabil-
ity scores for complete word strings, and on that basis predicts which strings are
well-formed sentences of the target language (details in section ..). We assess the
model’s accuracy under various circumstances, and where it falls short we ask what
additional resources would be needed to achieve a significant improvement in task
performance.

The original stimulus for our series of experiments was a dramatic report by Reali
and Christiansen (, ) (see also Berwick, Chomsky, and Piattelli-Palmarini in
this volume). They found that an extremely simple model using transitional probabil-
ities between words, trained on extremely simple input (speech directed to one-year-
olds), was able to ace what is often regarded as the ultimate test of syntax acquisition:
which auxiliary in a complex sentence moves to the front in an English question?
If that finding could be substantiated, there would appear to be no need to develop
more powerful acquisition models. Distributional learning of a complex syntactic
construction would have been proved to be trivially easy.

We checked the finding and replicated it (results below). However, as we will
explain, we found it to be fragile: almost any shift in the specific properties of the test
sentences resulted in chance performance or worse. Thus, two questions presented
themselves. (i) What distinguishes the circumstances of the original success from
those of the subsequent failures? (ii) Does an understanding of that give grounds for
anticipating that broader success is within easy reach, needing perhaps only slight
enrichment of the original model or the information it has access to?
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To address these points, the first author conducted a series of eighteen computer
experiments, reported in full in Kam (). The earlier experiments, summarized
here as background, showed that the model’s use of transitional probabilities at the
level of words, or even with part-of-speech categories, does not suffice for reliable
discrimination between grammatical and ungrammatical auxiliary fronting (Kam
). In this paper we report our most recent experiments in the series, which were
directed to the role of phrase structure in the acquisition of auxiliary movement.
To anticipate: we found that if, but only if, the learning model had access to certain
specific phrase structure information, it succeeded spectacularly well on the auxiliary-
fronting construction. The implication is that transitional probabilities could be the
basis for natural language syntax acquisition only if they can be deployed at several
levels, building up from observable word-level transitions to relations between more
abstract phrasal units.

. The Original N-Gram Experiments

.. Linguistic preliminaries

The sentences tested in these experiments were instances of what we call the PIRC
construction (Polar Interrogatives containing a Relative Clause), in which question
formation requires fronting of the auxiliary in the main clause, not the auxiliary in
the RC (N. Chomsky  and since). Grammatical and ungrammatical forms were
compared. Examples are shown in (), with the trace of the moved auxiliary indicated
here (though of course not in the experiments).

() a. Isi the little boy who is crying ti hurt?

b. *Isi the little boy who ti crying is hurt?

Reali and Christiansen (henceforth R&C) tested n-gram models: a bigram model
and a trigram model. A bigram is a sequence of two adjacent words; a trigram is a
sequence of three adjacent words. These n-gram models did not differ radically in
their performance, so for brevity here we focus on the bigram model. It gathers bigram
data from a corpus of sentences, and feeds it into a calculation of the probability
that any given sequence of bigrams would also occur in the corpus. The bigrams in
sentences (a,b) are shown, in angle brackets, in (a,b) respectively.

() a. <is the> <the little> <little boy> <boy who> <who is> <is crying>
<crying hurt>

b. <is the> <the little> <little boy> <boy who> <who crying> <crying is>
<is hurt>

 Following standard practice we refer to the inverting verbs as auxiliaries, though the examples often
contain a copula (as in the main clause of () above). Below we also discuss do-support and inversion of
main verbs.
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Bigram statistics could be employed in many different ways within a learning model
(see for example Chang et al. ; also section . below). The bigram model as
defined by R&C puts bigrams to work in a direct and simple manner. It does not
represent syntactic structure. It does not compose grammar rules. Its knowledge
of the language consists solely of the set of all the bigrams in the training corpus,
each assigned an estimated transitional probability (see below). R&C’s experimental
project thus raises the linguistic-theoretical question: Is it possible in principle to dis-
criminate grammatical and ungrammatical forms of auxiliary inversion by reference
solely to pairs of adjacent words?

We think most linguists would judge that it is not, for several reasons. One con-
sideration is Chomsky’s original point: that the generalization about the right auxil-
iary to move is not that it is in any particular position in the word string, but that
it is in a particular position in the syntactic tree; auxiliary inversion is ‘structure-
dependent’. There are non-transformational analyses of the inversion facts, but they
also crucially presuppose phrase structure concepts (see section .. below). Also,
auxiliary movement creates a long-distance dependency between the initial auxiliary
and its trace if defined over the word string (six words intervene in (a), clearly beyond
the scope of a bigram) whereas the dependency spans just one element, an NP in
every case, if defined over syntactic structure, bringing it within reach at least of a
trigram model. So a purely linear analysis in terms of word pairs would seem unlikely
to be able to capture the relevant differences that render (a) grammatical and (b)
ungrammatical. However, R&C’s noteworthy finding of successful discrimination by
the bigram model suggests that we should pause and reconsider. Perhaps, after all,
there are properties of the word pairs in the two sentence versions which, in some
fashion, permit the grammatical one to be identified.

For instance, the bigram model might judge (b) ungrammatical on the basis of its
bigram <who crying>, which presumably is absent or vanishingly rare in a typical
corpus. This may sound like a sensible strategy: judge a sentence ungrammatical if
it contains an ‘ungrammatical’ (i.e., unattested) bigram. Against such a strategy the
objection is often raised that a linguistic form may be unattested in a corpus for many
reasons other than its being ungrammatical (cf. Colorless green ideas sleep furiously;
Chomsky ). But in the case of auxiliary inversion, there is another and quite
specific problem with this approach: the grammatical version (a) also contains a
vanishingly rare bigram <crying hurt>. By parity of reasoning, that should indicate
to the model that (a) is also ungrammatical, leaving no obvious basis for preferring
one version of the sentence over the other. Thus, a decision strategy based on weighing
one low-frequency bigram against another is delicately balanced: it might sometimes
succeed, but not reliably so unless there were a systematic bias in the corpus against
bigrams like <who crying> and in favor of bigrams like <crying hurt>. It is not clear
why there would be; but that is just the sort of thing that corpus studies can usefully
establish.
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An alternative strategy might focus instead on the higher-frequency bigrams in the
test sentences. The learner might judge a sentence grammatical if it contains one or
more strongly attested bigrams. A good candidate would be the bigram <who is>
in (a), which can be expected to have a relatively high corpus probability. Since
the ungrammatical version has no comparably strong bigram in its favor, there is an
asymmetry here that the learner might profit from. This generates an experimental
prediction: If the grammatical version in all or most test pairs contains at least one
strong bigram, a high percentage of correct sentence choices is likely; if not, the
model’s choices will not systematically favor the grammatical version. In the latter
case, exactly how well the model performs will depend on details of the corpus,
the test sentences, how bigram probabilities are calculated, and the sentence-level
computations they are entered into. These we now turn to.

.. Procedure

For maximum comparability, all our experiments followed the method established by
R&C except in the specific respects, indicated below, that we modified over the course
of our multi-experiment investigation. The training corpus consisted of approximately
, child-directed English utterances (drawn from the Bernstein-Ratner corpus
in CHILDES; MacWhinney ). The test sentences were all instances of the PIRC
construction. In a forced-choice task, grammatical versions were pitted against their
ungrammatical counterparts (fronting of the RC auxiliary), as illustrated by () above.

For our Experiment , a replication of R&C’s, we created  such sentence pairs
from words (‘unigrams’) in the corpus, according to R&C’s templates in (), where
variables A and B were instantiated by an adjective phrase, an adverbial phrase, a
prepositional phrase, a nominal predicate, or a progressive participle with appropriate
complements.

() Grammatical: Is NP
{

who
that

}
is A B?

Ungrammatical: Is NP
{

who
that

}
A is B?

The corpus contained monoclausal questions with auxiliary inversion (e.g., Are you
sleepy?), and non-inverted sentences with RCs (e.g., That’s the cow that jumped over
the moon), but no PIRCs.

R&C computed the estimated probability of a sentence as the product of the esti-
mated probabilities of the bigrams in the sentence. The sentence probability was

 Of course it is possible that the bigrams in the ungrammatical version collectively outweigh the
advantage of the strong bigram(s) in the grammatical version, so this strategy is not guaranteed to always
lead to the correct choice. See results below.

 The probability of a bigram not in the corpus must be estimated. We followed R&C in applying an
interpolation smoothing technique. In what follows, we use the term ‘bigram probability’ to denote the
smoothed bigram probability.
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entered into a standard formula for establishing the cross-entropy of the sentence
(see details in R&C  and Kam et al. ). The cross-entropy of a sentence is
a measure of its unlikelihood relative to a corpus; a lower cross-entropy corresponds
to a higher sentence probability. In the forced-choice task the model was deemed to
select as grammatical whichever member of the test sentence pair had the lower cross-
entropy relative to the training corpus. To simplify discussion in what follows, we refer
to sentence probabilities rather than cross-entropies; this does not alter the overall
shape of the results.

It is important to note that a bigram probability in this model is not the probability
that a sequence of two adjacent words (e.g., boy and is) will occur in the corpus. It is
the probability of the second word occurring in the corpus, given an occurrence of
the first: the bigram probability of <boy is> is the probability that the word is will
immediately follow an occurrence of the word boy. So defined, a bigram probability
is equivalent to a transitional probability, as manipulated in the stimuli for the infant
learning experiments noted above.

.. Initial results and their implications

In R&C’s Experiment , the bigram model selected the grammatical version in 
of the  test sentence pairs. In our Experiment  the model also performed well,
predicting  percent of the test sentences correctly. Now we were in a position to be
able to explore the basis of the model’s correct predictions.

Some bigrams in the test sentences could not have contributed, because they were
identical in the grammatical and ungrammatical versions. For the sentence pair (),
the bigrams <is the>, <the little>, <little boy>, and <boy who> are in both versions.
The bigrams that differ are shown in Table .; we refer to these as distinguishing
bigrams. The model’s selection of one sentence version over the other can depend
only on the distinguishing bigrams.

The results showed, as anticipated in our speculations above, that the majority of
correct choices were due to the contribution of the distinguishing bigram containing
the relative pronoun in the grammatical version: either <who is> or <that is>.
(Henceforth, we abbreviate these as <who|that is>.) This bigram had the opportunity
to influence all judgments in the experiment because it appeared in every grammatical
test sentence, and not in any ungrammatical versions. Note that this was by design:
it was prescribed by the templates in () that defined the test items. The <who|that

Table .. Distinguishing bigrams for the test sentence pair
(a)/(b)

(a) grammatical <who is> <is crying> <crying hurt>

(b) ungrammatical <who crying> <crying is> <is hurt>
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is> bigram boosted selection of the grammatical version in many cases because it
had a higher corpus frequency than most other bigrams in the test sentences, in part
because its elements are both closed-class ‘functional’ items, which recur more often
than typical open-class lexical items. In the ungrammatical version, by comparison,
the word who or that was followed by a lexical predicate, differing across the sentence
pairs and mostly with low corpus frequency (e.g., <who crying> in (b)).

In short: the <who|that is> bigram is the means by which the model was able to
select the correct form of auxiliary inversion. Its performance rested on a strictly local
word-level cue, without any need to recognize the auxiliary movement dependency
per se or to learn anything at all about the structural properties of PIRCs. Thus, one
part of our mission was accomplished. Discovering the decisive role of the <who|that
is> bigram explains the model’s strong performance in R&C’s original experiment,
and in our replication of it. But this discovery raises a doubt about whether the model
could select the grammatical version of PIRCs that lack a helpful ‘marker’ bigram such
as <who|that is>. Our next task, therefore, was to find out whether other varieties of
PIRC contain bigrams that can play a similar role.

. Limits of N-Gram-based Learning

.. Extending the challenge

The templates in () are very specific. They pick out just a subset of PIRC construc-
tions, those with is as the auxiliary in both clauses, and an RC with a subject gap
(i.e., the relative pronoun fills the subject role in the RC). But there are many other
variants of the PIRC construction: the auxiliaries may differ, the RC could have a
relativized object, the matrix clause might have a lexical main verb that requires do-
support in the question form, or in some languages the main verb may itself invert.
The rule is the same in all cases, but the bigrams it creates vary greatly. Table . shows
some examples.

In our subsequent group of experiments, aimed at assessing how generally the
bigram model could pick out grammatical versions, we tested PIRCs with is in both
clauses but an object gap RC, and PIRCs with a main verb and do-support. We also
tested Dutch examples in which the main verb inverts.

The bigram model did very poorly on these PIRC varieties not constrained by
R&C’s templates; see Table ..

These weak results suggest that the model did not find any reliable local cues to the
grammatical version. Inspection of the distinguishing bigrams confirmed that these
other PIRC varieties do not contain any useful ‘marker’ bigrams. These results thus
support the diagnosis that when the bigram model does succeed, it does so on the basis

 Other factors bestowing a powerful role on the <who|that is> bigram were the specific nature of R&C’s
smoothing formula, and the fact that many other bigrams in the test sentences were not in the corpus; for
details see Kam et al. (: section .).
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Table .. More varied examples of auxiliary (or main verb) inversion

Sub-type of PIRC Example

Is-is subject gap (a) Is the little boy who is crying hurt?
Other auxiliaries Can the lion that must sleep be fed carrots?
Is-is object gap Is the wagon that your sister is pushing red?
Main verbs with do-support Does the boy who plays the drum want a cookie?
Main verb inversion in Dutch Wil de baby [die op de stoel zit] een koekje?

‘Does the baby that is sitting on the chair want a cookie?’

Table .. Bigram model performance for four varieties of PIRC

Subtype of PIRC  correct  incorrect  undecided

Is-is subject gap RC (as above)   
Is-is object gap RC   
Main verbs with do-support   
Main verb inversion in Dutch .  .

of information that is neither general nor inherently related to the structurally relevant
properties of PIRCs. It is no more than a lucky chance if some specific instantiation
of the PIRC construction—such as the one originally tested—happens to offer a high-
probability word sequence that correlates with grammaticality.

A tempting conclusion at this point is therefore that this simple learning model
is too simple to match the achievements of human learners. The original result was
impressive, but subsequent tests appear to bear out the hunch that a word-level learner
is not equipped to recognize the essential difference between correct and incorrect
auxiliary-inversion. Neither the early success on is-is subject gap PIRCs nor the nature
of the subsequent failures encourages the view that broader success could be attained
by minor adjustments of the model or its input. So perhaps one might rest the case
here. However, we really hoped to be able to settle the matter once and for all, so that
later generations of researchers would not need to revisit it.

Also, to be fair, it should be noted that no child acquisition study to date has
investigated the age (and hence the level of input sophistication) at which learners of
English or any language achieve mastery of object gap PIRCs and do-support PIRCs.

This lacuna in the empirical record includes the much-cited early study by Crain and
Nakayama (), which focused on the is-is subject gap variety. One step in the

 For Dutch, only forty sentence pairs were tested. All other experiments reported here had  test
pairs for each subtype of PIRC.

 It has been maintained (Ambridge et al. ) that children before five years do not have a fully
productive rule for auxiliary inversion even in single-clause questions.
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right direction is taken in a recent study by Ambridge et al. (), which extends
the domain of inquiry from is-is to can-can PIRCs.

One last reason for not rejecting n-gram models out of hand for auxiliary-inversion
is that it is not at all an uncommon occurrence in current research to find that, as com-
putational techniques have become ever more refined and powerful, they can achieve
results which would once have been deemed impossible (Pereira ). Thus, given
our goal of establishing an unchallengeable lower bound on learning mechanisms that
could acquire a natural language, it was important to assess whether or not the failures
we had documented stemmed from the inherent nature of the n-gram approach. Thus
we entered the next phase of our project. We conducted additional experiments in
which we provided the n-gram model with better opportunities to succeed if it could.

.. Increasing the resources

In Experiments –, keeping the basic mechanism constant, we provided it with
enriched training corpora:

• a longitudinal corpus of speech to a child (Adam) up to age ;;
• a corpus approximately ten times larger than the original, of adult speech to older

children, up to age eight years, containing more sophisticated syntax;
• a corpus into which we inserted PIRC examples (fifty object gap; fifty do-

support), providing direct positive information for the model to learn from if
it were capable of doing so;

• the original corpus but with sentences coded into part-of-speech tags, as a bridge
between specific words and syntactic structure.

In Experiments –, we moved from the bigram model to a trigram model, gather-
ing statistical data on three-word combinations, thus expanding the model’s window
on the word string. The trigram model was trained on the original corpus and the
larger corpus with and without part-of-speech tags. (See Kam : ch.  for detailed
results.) In all these studies we used the object gap and do-support PIRCs as test cases
for whether an n-gram model could go beyond reliance on an ‘accidentally’ supportive
surface word sequence such as <who|that is> in the subject gap examples.

These resource enhancements did improve the n-gram models’ success rate to some
extent, but performance on object gap and do-support PIRCs was still lackluster. Per-
formance did not rise over  percent correct, except in one case (out of twenty-one
results) which could be attributed to the presence of a ‘marker’ trigram. Moreover,
the n-gram models never did well across all PIRC varieties under the same conditions:

 The chapter by Berwick, Chomsky, and Piattelli-Palmarini in this volume, which includes a critique
of R&C’s approach to auxiliary inversion, presents data for the trigram model trained on an additional
corpus: one created by Kam et al. () in which the relative pronouns who and that were distinguished
from interrogative who and demonstrative and complementizer that.

 The trigram was <n v:aux&S part-PROG> (e.g., sister is pushing). It appeared only in grammatical
versions, and in most of them due to materials construction: object gap RCs needed transitive verbs rather
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sometimes performance on object gap PIRCs improved but do-support PIRCs did less
well, and vice versa. Even the is-is subject gap type was less successful in many cases
than in the original experiment. (See Kam : ch.  for detailed results.)

Thus this series of experiments provided little support for the view that n-gram
models are on basically the right track and need only a little more assistance from the
environment to begin performing at a consistently high level. Two conclusions seem
to be warranted. One is that either there wasn’t rich information in the corpus or the
n-gram models were too weak to extract it. Either way, the experimental findings offer
no demonstration of ‘the richness of the stimulus’, which is the conclusion that R&C
drew from their results: ‘the general assumptions of the poverty of stimulus argument
may need to be reappraised in the light of the statistical richness of language input to
children’ (R&C : ). The second conclusion is that the n-gram models were
unable to extend a pattern learned for one subvariety of PIRC onto other instantiations
of the same linguistic phenomenon. The object gap and do-support forms were not
mastered on their own terms, based on their own particular distributional proper-
ties; but equally clearly, the n-gram models did not form a general rule of auxiliary
inversion which could be projected from the subject gap type to other varieties.

All of this points to a deep inability of a localistic word-oriented learning model to
detect or deploy the true linguistic generalization at the heart of auxiliary inversion
phenomena. Therefore a more radical shift seems called for: a qualitative rather than
a merely quantitative augmentation of the learning model or its resources. Very dif-
ferent ideas are possible concerning what more is needed. Linguists may regard UG
as the essential addition; computer scientists might call instead for stronger statistics,
perhaps as embodied in neural networks; psychologists might argue that negative
data (direct or indirect) plays an essential role in child syntax acquisition. These pos-
sibilities are worth pursuing. But we chose, in our most recent set of experiments, to
examine the role of phrase structure as a basis for the acquisition of transformational
operations such as auxiliary inversion.

This third phase of our project thus moves toward a more positive investigation
of the computational resources needed for the acquisition of natural language syn-
tax: How could the previous learning failures be rescued? Here we address the spe-
cific question: In acquiring the auxiliary inversion construction, could an n-gram
model benefit from access to phrase structure information? Chomsky’s observation
concerning the structure dependence of auxiliary inversion suggests that it might. In

than other predicate types such as adjectives. Apart from this, the only other success occurred when we
ran the bigram model on the Wall Street Journal corpus (Marcus et al. ), which is presumably of little
relevance to child language acquisition.

 Neural network models are at the opposite end of the scale from n-gram models in respect of
computing power. Simple Recurrent Networks (SRNs) have been applied to the PIRC construction in work
by Lewis and Elman () and R&C () and have performed well. But so far they have been tested only
on the is-is subject gap variety which even the bigram model mastered, so the results are uninformative.
More telling will be how they perform with other PIRC varieties on which the bigram model failed. (See
also Berwick, Chomsky, and Piattelli-Palmarini, this volume)
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non-transformational analyses, as in Head-driven Phrase Structure Grammar (HPSG;
Sag et al. ), there is also crucial reference to phrase structure. Linguists disagree
about many things, but on this point they are in full accord: there is no viable linguistic
analysis that characterizes the auxiliary inversion construction in terms of unstruc-
tured word sequences.

. Providing Phrase Structure Information

The aim of our phrase structure (PS) experiments was to integrate hierarchical struc-
tural representations into otherwise simple statistical learning models like those
above, which rely solely on transitional probabilities between adjacent items. This
project raises novel questions. How would such a learning system obtain PS infor-
mation? How could it represent or use it?

On these matters we can only speculate at present. We suppose it might be possible
to implement a sequence of n-gram analyses, at increasingly abstract levels, each
feeding into the next: from words to lexical categories (parts of speech) to phrases
and then larger phrases and ultimately clauses and sentences. The phrase structure
information thus acquired would then enter into the PIRC discrimination task to
assist in selecting the grammatical sentence. We emphasize that this is an experiment
in imagination only at present. There do exist algorithms that compute phrase struc-
ture from word sequences, but it remains to be established whether they can do so
without exceeding the computational resources plausibly attributable to a two-year-
old child (however approximate any such estimate must be). Multi-level tracking of
transitional probabilities has been proposed as a means for human syntax acquisition.
Some of the data are from adult learning experiments (Takahashi and Lidz ).
But Gómez and Gerken (: ) speculated for children: ‘A statistical learning
mechanism that processes transitional probabilities among linguistic cues may also
play a role in segmenting linguistic units larger than words (e.g. clauses and phrases)’.
Of interest in this context are the findings of an infant acquisition study by Saffran and
Wilson (), which suggest that one-year-olds can perform a multilevel analysis,
simultaneously identifying word boundaries and learning the word order rules of a
finite-state grammar.

The approach we are now envisaging is sketched in ():

() Multilevel n-gram analysis → phrase structure → PIRC discrimination

We decided to tackle the second step first, temporarily imagining successful accom-
plishment of the first one via some sort of cascade of transitional probability analy-
ses at higher and higher levels of structure. We thus made a gift of PS information
to the bigram learning model, and then tested it again on the auxiliary inversion

 We cannot review this literature. Some points of interest include Brill (); Ramshaw and Marcus
(); Bod (); Wang and Mintz ().
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forced-choice discrimination to see whether it would now succeed more broadly.
Whether it would do so was not a foregone conclusion. But if phrase structure knowl-
edge did prove to be the key, that would represent a welcome convergence between
theoretical and computational linguistics.

.. Method

To run these experiments we had to devise ways by which PS information could be
injected into the learning situation. We did so by assuming that the PS building pro-
cess produced as output a labeled bracketing of the word string. Thus we added labeled
phrase brackets into all word strings in the training corpus and test sentences.

We inserted only NP brackets in the present experiments, for two reasons. We were
concerned that a full bracketing would overwhelm the system. Within the constraint
of a limited bracketing, the fact that the word sequence following the initial auxiliary
is an NP seemed likely to be of most benefit to the learner (see discussion below).
In future work we can explore the consequences of supplying a full phrase structure
bracketing.

NP brackets were manually inserted surrounding all noun phrases in the origi-
nal corpus and in the test sentences used in our earlier experiments (subject gap,
object gap, and do-support PIRCs). Left and right brackets were distinguished; see
example ().

() Let NP[ the boy ]NP talk on NP[ the phone ]NP.

For purposes of the bigram analysis, each bracket was treated on a par with words
in the string. Thus a bigram now consisted of two adjacent items which might be
words and/or labeled brackets. For example, one bigram in () is <the boy> and
another is <boy]NP>. Bigram and sentence probabilities (and cross-entropies) were
then computed as before, and employed in the forced-choice discrimination task to
select one sentence version as the grammatical one.

Two experiments were conducted. They differed with respect to the labels on the
brackets in the test sentences. In PS-experiment  the labeled bracketing was as illus-
trated in (). It does not distinguish well-formed NPs such as the boy who is crying in
(a) from ungrammatical NPs such as the boy who crying in (b).

() a. Gramm: Is NP[NP[the little boy]NP NP[who]NP is crying ]NP hurt?
b. Ungramm: Is NP[NP[the little boy]NP NP[who]NP crying ]NP is hurt?

This labeling would allow us to see whether the model could identify the grammatical
version based solely on the locus of a sequence of an NP followed by a non-finite
predicate, which is acceptable in the main clause of (a) but not in the RC in (b).

 In other experiments we substituted the symbol NP for word sequences constituting noun phrases.
(See Kam : ch.  for details.)

Janet Fodor
Sticky Note
In (6) a. and b., and in (7) b, there should be a space after the first left bracket [
For example: 
Is NP[ NP[the little......
NOTE THAT (7) a. is correct in this respect. The other three examples should have spacing like (7) a.



–––– -Piatell-c-drv Piatelli (Typeset by SPi)  of  June ,  :

OUP UNCORRECTED PROOF – FIRST PROOF, //, SPi

 Kam and Fodor

In PS-experiment  we used the label *NP on the brackets around the ill-formed
complex NP in the ungrammatical sentence version, as in (b).

() a. Gramm: Is NP[ NP[the little boy]NP NP[who]NP is crying ]NP hurt?
b. Ungramm: Is ∗NP[NP[the little boy]NP NP[who]NP crying ]∗NP is hurt?

This avoids giving the learning model misleading information about the grammatical
status of the word sequence the little boy who crying; it is not in an equivalence
class with strings like the little boy or Jim. Note, though, that employing this labeling
presupposes that in the prior PS-assignment stage, the learning model would have
been able to recognize the deviance of who crying and percolate that up from the RC
to the NP. We return to this point in discussion below. In any case, explicit indication
that a word sequence such as the little boy who crying is not a well-formed constituent
could be expected to provide the strongest support for rejection of ungrammatical
PIRCs in the discrimination task.

... PS-experiment : Results and discussion The percentages of correct choices
for the object gap and do-support PIRCs were essentially unchanged compared with
the original experiment without brackets; see Table .. For the subject gap PIRCs,
on which the model had previously succeeded without bracketing, there was a highly
significant drop in performance.

This may appear paradoxical: provided with richer relevant information, the model
performed less well. A positive outcome might have been anticipated due to the
coding of the whole complex subject as an NP. Yet the data suggest that this hindered
rather than helped. To understand this, let us consider the is-is subject gap examples
in (), with distinguishing bigrams as in ().

() a. <is crying> < ]NP hurt>

b. < ]NP crying> <is hurt>

The unlikely bigrams <crying hurt> and <who crying> in (a) and (b) respec-
tively (section .. above) have now been transformed by the bracketing into
better-supported bigrams: <]NP hurt> in (a) and <]NP crying> in (b). These
might well occur in the corpus, instantiated in sentences like Are NP[you]NP hurt?
and Is NP[Baby]NP crying? (also in small-clause constructions such as I like NP[my

Table .. Begram model performance in PS-experiment 

Word string with  correct  incorrect  undecided
NP-labeled brackets

Is-is subject gap PIRCs   
Is-is object gap PIRCs   
Do-support PIRCs   
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porridge]NP hot). But since these bigrams with NP-brackets benefit both sentence
versions, they provide no net gain for the grammatical one. For the object-gap and
do-support PIRCs, comparable considerations apply, but we will not track through
the details here.

Outcomes thus remain much as for the original unbracketed corpus—with the one
exception of the is-is subject gap PIRCs which have plummeted from  percent to 
percent correct. The reason is clear: the bracketing has broken up the previously influ-
ential <who|that is> bigram into <who|that ]NP> and <]NP is>. The former is in
both test sentence versions, and so is the latter although at different sentence positions,
so they are not distinguishing bigrams and cannot affect the outcome. The original
striking success without brackets is thus reduced to the general rough-and-tumble of
which particular item sequences happen to be better represented in the corpus.

Thus there is no indication here that NP brackets can solve the discrimination
problem for the bigram learner. Although the NP brackets carry relevant information,
a bigram model is unable to make good use of that information because it has too
local a view of the sentence patterns. Its problem is the same as before: there is a
local oddity in both the grammatical and the ungrammatical word string, consisting
of a non-finite predicate not immediately preceded by the sort of auxiliary that selects
for it. The NP-bracketing adds only that what does precede the non-finite predicate
is an NP. From a linguistic perspective, however, the relevant difference is that in the
ungrammatical version what precedes the main predicate is a defective NP, while in
the grammatical version it is a well-formed NP. These are distinguished in the next
experiment.

... PS-experiment : Results and discussion In PS-experiment  we supplied the
model with the information it evidently could not compute for itself in the previous
experiment: that an NP followed by a non-finite predicate is damaging to the sentence
as a whole if it occurs in an RC inside an NP, but not if it is in the main clause.
NPs containing an ill-formed RC were labeled with the ∗NP notation. The results in
Table . show that there were now virtually no errors. The model overwhelmingly
favored the grammatical sentence versions.

What caused rejection of the ungrammatical sentences in this experiment was not
the ∗ symbol itself (which has no meaning for the learning model), but the fact that,
unlike all other unigrams in the test sentences, including NP[ and ]NP, the unigrams
∗NP[ and ]∗NP are not present in the corpus. (No utterances in the Bernstein-Ratner
corpus were found to contain ungrammatical NPs.) Standard treatment in cases
where a unigram is unknown in the corpus is to assign it an estimated probability; we

 With trigrams, which have a wider compass than bigrams, results improved but were still unsatisfac-
tory:  correct for subject gap;  for object gap;  for do-support. (See Kam : ch.  for details.)

 We re-ran the experiment after inserting sixty ungrammatical NPs into the corpus, so that the
unigrams ∗NP[ and ]∗NP had a positive probability without invoking the Witten-Bell formula. This made
little difference: all three PIRC varieties showed  correct.
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Table .. Bigram model performance in PS-experiment .

Word string with NP and  correct  incorrect  undecided
*NP-labeled brackets

Is-is subject gap PIRCs   
Is-is object gap PIRCs   
Do-support PIRCs   

did so using the Witten-Bell discounting technique (Witten and Bell ). However,
the estimated probability is low relative to that of actually occurring unigrams, so
its presence in the ungrammatical sentence can drag down the sentence probability,
leading to preference for the grammatical version.

Together, these two experiments show that an n-gram-based learner could discrim-
inate grammatical from ungrammatical PIRCs only if it could distinguish NPs from
*NPs. Earlier, we postponed the question of whether and how it could do so. Now we
must consider that.

.. How to recognize *NP?

Presumably, the recognition that ‘the boy who crying’ in (b) is an ungrammatical
noun phrase would have to occur during the process of assigning phrase structure to
the sentence, based on recognition of ‘who crying’ as an ungrammatical RC, missing
an auxiliary. However, in the grammatical version (a) there is also a missing auxiliary
in the bigram <]NP hurt>. The absence of the needed auxiliary has a very different
impact in the two cases: in (b) it contaminates every larger phrase that contains it,
while in (a) it is amnestied by presence of the auxiliary at the start of the sentence.
In general: since natural languages allow movement, absence of an obligatory item
(a ‘gap’) in one location can be licensed by its presence elsewhere in the sentence. But
there are constraints on where it can be. RCs are ‘extraction islands’, i.e., a gap inside
an RC cannot be rescued by an item outside it (cf. the Complex NP Constraint of Ross
). By contrast, the main clause predicate is not an extraction island, so the lack of
a needed auxiliary there can be rescued by association with the ‘extra’ auxiliary at the
beginning of the sentence.

The notion of extraction islands has been refined and generalized as syntactic the-
ory has progressed. In current theory, the contrast between legitimate and illegitimate
movement is most often portrayed not in terms of specific constructions such as main
clauses versus RCs but in terms of structural locality: local movement dependencies
are favored over more distant ones by very general principles of economy governing
syntactic computations. Deeper discussion of these matters within the framework
of the Minimalist theory can be found in the chapters by Berwick, Chomsky, and
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Piattelli-Palmarini and Chomsky in the present volume; see also the chapter by Rizzi
and Belletti which shows locality/economy principles at work in child language.

By contrast with the transformational approach, recent discussions by Ambridge et
al. (), Clark and Eyraud (), and Sag et al. () suggest that as long as phrase
structure is in place, the correct choice between grammatical and ungrammatical
PIRCs follows even more naturally in a non-transformational theoretical framework,
and hence might be even more readily accessible to a modest learning algorithm. In
particular, a ternary structure for auxiliary inversion constructions, as in (), is very
simple, and would be frequently attested in the input in sentences such as Is Jim hurt?.

()

Aux NP Predicate

Once acquired, this analysis would automatically extend from Is Jim hurt? to Is the little
boy who is crying hurt?. Without a transformational operation that moves the auxiliary
from one site to another, there would be no question of moving it from the wrong
location. Ungrammatical PIRC examples like (b) would be simply ungeneratable.
It might even be argued, contrary to stimulus poverty reasoning, that it is actually
beneficial for learners that they would hear many simple questions like Is Jim hurt?
before ever encountering a PIRC.

However, the grammar must not allow a sequence of Aux, NP, and a non-finite
predicate to be freely generated. There is a selectional dependency which must be
captured between the sentence-initial aux and the non-adjacent main clause predicate,
as Sag et al. note. The predicate must be of a type that is selected for by the auxiliary;
see ().

() Is Jim running? *Is Jim run?
Jim is running. *Jim is run.

*Can Jim running? Can Jim run?
*Jim can running. Jim can run.

In a transformational framework this selectional dependency across the subject NP is
captured by the assumption that the auxiliary originates adjacently to the predicate.
In HPSG, without movement operations, a lexical rule manipulates the argument
structure of the auxiliary. In declaratives its first argument (the subject) is realized
preceding the auxiliary while its other argument (the non-finite predicate) follows
the auxiliary. The lexical rule modifies this pattern so that in interrogatives both of
the auxiliary’s arguments follow it.

A lexical rule is inherently local since it manipulates the argument structure of one
lexical head. Therefore an error such as (b), spanning two clauses, can never arise.
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Note, however, that this nice solution to the auxiliary inversion learnability problem
only holds if it is necessary for auxiliary inversion to be captured by a lexical rule. If
not, there is still a risk of a learning mis-step, even in the HPSG framework. Long-
distance phenomena such as wh-‘movement’ or topicalization cannot be handled by
lexical rules. HPSG treats them by means of a different formal device: GAP features
are passed through the tree, from one node to another, between the ‘gap’ position and
the surface position of the item. While there are some constraints on the inheritance
of GAP features, there is no bound on how far a GAP feature can be passed.

Therefore, an HPSG-based learner that encountered questions in the input, even
simple questions like Is Jim running?, would have to choose between formulating
a lexical rule, which is local, or establishing GAP feature-passing for auxiliaries. If
preference for a lexical rule were innate, then indeed a learner’s grammar could not
license displacement of the ‘wrong’ auxiliary as in (b). But if a learner could opt
for a GAP-feature analysis of simple questions, then errors like (b) could ensue
on PIRCs. To prevent this, an innate constraint would be needed on GAP feature
passing, comparable to the locality constraint needed in a transformational system:
despite formal differences, both theories must make the RC an extraction island.
(For discussion of complex NP islands in HPSG, see Pollard and Sag : ch. .)

. Conclusions

This study of the prospects for n-gram-based learning of natural language syntax leads
to the following conclusions:

(I) Low-level statistics over word strings might contribute to syntax learning but
cannot substitute for syntactic knowledge.

(II) Specifically: such statistics cannot capture the generalization about auxiliary
inversion.

(III) Theoretical differences aside, the only route to the correct generalization
requires a bias toward local syntactic dependencies, defined over a phrase
structure analysis of the sentence.

(IV) Hence, a learner that makes use of word-level statistics as the basis for auxil-
iary inversion must, at a minimum, also have an innate propensity to project
phrase structure onto word strings—just as Noam Chomsky observed four
decades ago.




