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Abstract

This paper describes a computational model of word
segmentation and presents simulation results on re-
alistic acquisition In particular, we explore the ca-
pacity and limitations of statistical learning mecha-
nisms that have recently gained prominence in cog-
nitive psychology and linguistics.

1 Introduction

Two facts about language learning are indisputable.
First, only a human baby, but not her pet kitten, can
learn a language. It is clear, then, that there must
be some element in our biology that accounts for
this unique ability. Chomsky’s Universal Grammar
(UG), an innate form of knowledge specific to lan-
guage, is an account of what this ability is. This po-
sition gains support from formal learning theory [1-
3], which sharpens the logical conclusion [4,5] that
no (realistically efficient) learning is possible with-
out priori restrictions on the learning space. Sec-
ond, it is also clear that no matter how much of a
head start the child has through UG, language is
learned. Phonology, lexicon, and grammar, while
governed by universal principles and constraints, do
vary from language to language, and they must be
learned on the basis of linguistic experience. In
other words–indeed a truism–both endowment and
learning contribute to language acquisition, the re-
sult of which is extremely sophisticated body of
linguistic knowledge. Consequently, both must be
taken in account, explicitly, in a theory of language
acquisition [6,7].

Controversies arise when it comes to the relative
contributions by innate knowledge and experience-
based learning. Some researchers, in particular lin-
guists, approach language acquisition by charac-
terizing the scope and limits of innate principles
of Universal Grammar that govern the world’s lan-
guage. Others, in particular psychologists, tend to
emphasize the role of experience and the child’s
domain-general learning ability. Such division of
research agenda understandably stems from the di-

vision of labor between endowment and learning–
plainly, things that are built in needn’t be learned,
and things that can be garnered from experience
needn’t be built in.

The important paper of Saffran, Aslin, & New-
port [8] on statistical learning (SL), suggests that
children may be powerful learners after all. Very
young infants can exploit transitional probabilities
between syllables for the task of word segmenta-
tion, with only minimum exposure to an artificial
language. Subsequent work has demonstrated SL
in other domains including artificial grammar learn-
ing [9], music [10], vision [11], as well as in other
species [12]. This then raises the possibility of
learning as an alternative to the innate endowment
of linguistic knowledge [13].

We believe that the computational modeling of
psychological processes, with special attention to
concrete mechanisms and quantitative evaluations,
can play an important role in the endowment vs.
learning debate. Linguists’ investigations of UG are
rarely developmental, even less so corpus-oriented.
Developmental psychologists, by contrast, often
stop at identifying components in a cognitive task
[14], without an account of how such components
work together in an algorithmic manner. On the
other hand, if computation is to be of relevance
to linguistics, psychology, and cognitive science in
general, being merely computational will not suf-
fice. A model must be psychological plausible, and
ready to face its implications in the broad empirical
contexts [7]. For example, how does it generalize
to typologically different languages? How does the
model’s behavior compare with that of human lan-
guage learners and processors?

In this article, we will present a simple compu-
tational model of word segmentation and some of
its formal and developmental issues in child lan-
guage acquisition. Specifically we show that SL
using transitional probabilities cannot reliably seg-
ment words when scaled to a realistic setting (e.g.,
child-directed English). To be successful, it must
be constrained by the knowledge of phonological
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structure. Indeed, the model reveals that SL may
well be an artifact–an impressive one, nonetheless–
that plays no role in actual word segmentation in
human children.

2 Statistics does not Refute UG

It has been suggested [15, 8] that word segmenta-
tion from continuous speech may be achieved by
using transitional probabilities (TP) between ad-
jacent syllables A and B, where , TP(A→B) =
P(AB)/P(A), with P(AB) being the frequency of B
following A, and P(A) the total frequency of A.
Word boundaries are postulated at local minima,
where the TP is lower than its neighbors. For ex-
ample, given sufficient amount of exposure to En-
glish, the learner may establish that, in the four-
syllable sequence “prettybaby”, TP(pre→tty) and
TP(ba→by) are both higher than TP(tty→ba): a
word boundary can be (correctly) postulated. It
is remarkable that 8-month-old infants can extract
three-syllable words in the continuous speech of an
artificial language from only two minutes of expo-
sure [8].

To be effective, a learning algorithm–indeed any
algorithm–must have an appropriate representation
of the relevant learning data. We thus need to be
cautious about the interpretation of the success of
SL, as the authors themselves note [16]. If any-
thing, it seems that the findings strengthen, rather
than weaken, the case for (innate) linguistic knowl-
edge. A classic argument for innateness [4, 5,
17] comes from the fact that syntactic operations
are defined over specific types of data structures–
constituents and phrases–but not over, say, linear
strings of words, or numerous other logical possibil-
ities. While infants seem to keep track of statistical
information, any conclusion drawn from such find-
ings must presuppose children knowing what kind
of statistical information to keep track of. After all,
an infinite range of statistical correlations exists in
the acoustic input: e.g., What is the probability of a
syllable rhyming with the next? What is the proba-
bility of two adjacent vowels being both nasal? The
fact that infants can use SL to segment syllable se-
quences at all entails that, at the minimum, they
know the relevant unit of information over which
correlative statistics is gathered: in this case, it is
the syllables, rather than segments, or front vowels.

A host of questions then arises. First, How do
they know so? It is quite possible that the primacy
of syllables as the basic unit of speech is innately
available, as suggested in neonate speech perception
studies [18]? Second, where do the syllables come
from? While the experiments in [8] used uniformly

CV syllables, many languages, including English,
make use of a far more diverse range of syllabic
types. And then, syllabification of speech is far
from trivial, which (most likely) involve both in-
nate knowledge of phonological structures as well
as discovering language-specific instantiations [14].
All these problems have to be solved before SL for
word segmentation can take place.

3 The Model

To give a precise evaluation of SL in a realis-
tic setting, we constructed a series of (embarrass-
ingly simple) computational models tested on child-
directed English.

The learning data consists of a random sam-
ple of child-directed English sentences from the
CHILDES database [19] The words were then pho-
netically transcribed using the Carnegie Mellon Pro-
nunciation Dictionary, and were then grouped into
syllables. Spaces between words are removed; how-
ever, utterance breaks are available to the modeled
learner. Altogether, there are 226,178 words, con-
sisting of 263,660 syllables.

Implementing SL-based segmentation is straight-
forward. One first gathers pair-wise TPs from the
training data, which are used to identify local min-
ima and postulate word boundaries in the on-line
processing of syllable sequences. Scoring is done
for each utterance and then averaged. Viewed as an
information retrieval problem, it is customary [20]
to report both precision and recall of the perfor-
mance.

The segmentation results using TP local minima
are remarkably poor, even under the assumption
that the learner has already syllabified the input per-
fectly. Precision is 41.6%, and recall is 23.3%; over
half of the words extracted by the model are not ac-
tual English words, while close to 80% of actual
words fail to be extracted. And it is straightfor-
ward why this is the case. In order for SL to be
effective, a TP at an actual word boundary must
be lower than its neighbors. Obviously, this con-
dition cannot be met if the input is a sequence of
monosyllabic words, for which a space must be pos-
tulated for every syllable; there are no local min-
ima to speak of. While the pseudowords in [8]
are uniformly three-syllables long, much of child-
directed English consists of sequences of monosyl-
labic words: corpus statistics reveals that on aver-
age, a monosyllabic word is followed by another
monosyllabic word 85% of time. As long as this
is the case, SL cannot, in principle, work.
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4 Statistics Needs UG

This is not to say that SL cannot be effective
for word segmentation. Its application, must be
constrained–like that of any learning algorithm
however powerful–as suggested by formal learning
theories [1-3]. The performance improves dramat-
ically, in fact, if the learner is equipped with even
a small amount of prior knowledge about phono-
logical structures. Specifically, we assume, uncon-
troversially, that each word can have only one pri-
mary stress. (This would not work for functional
words, however.) If the learner knows this, then
it may limit the search for local minima only in
the window between two syllables that both bear
primary stress, e.g., between the two a’s in the
sequence “languageacquisition”. This assumption
is plausible given that 7.5-month-old infants are
sensitive to strong/weak prosodic distinctions [14].
When stress information suffices, no SL is em-
ployed, so “bigbadwolf” breaks into three words
for free. Once this simple principle is built in, the
stress-delimited SL algorithm can achieve the pre-
cision of 73.5% and 71.2%, which compare favor-
ably to the best performance reported in the litera-
ture [20]. (That work, however, uses an computa-
tionally prohibitive and psychological implausible
algorithm that iteratively optimizes the entire lexi-
con.)

The computational models complement the ex-
perimental study that prosodic information takes
priority over statistical information when both are
available [21]. Yet again one needs to be cautious
about the improved performance, and a number of
unresolved issues need to be addressed by future
work. It remains possible that SL is not used at
all in actual word segmentation. Once the one-
word-one-stress principle is built in, we may con-
sider a model that does not use any statistics, hence
avoiding the computational cost that is likely to
be considerable. (While we don’t know how in-
fants keep track of TPs, there are clearly quite some
work to do. Syllables in English number in the
thousands; now take the quadratic for the potential
number of pair-wise TPs.) It simply stores previ-
ously extracted words in the memory to bootstrap
new words. Young children’s familiar segmenta-
tion errors–”I was have” from be-have, “hiccing up”
from hicc-up, “two dults”, from a-dult–suggest that
this process does take place. Moreover, there is ev-
idence that 8-month-old infants can store familiar
sounds in the memory [22]. And finally, there are
plenty of single-word utterances–up to 10% [23]–
that give many words for free. The implementation
of a purely symbolic learner that recycles known

words yields even better performance: a precision
of 81.5% and recall of 90.1%.

5 Conclusion
Further work, both experimental and computational,
will need to address a few pressing questions, in or-
der to gain a better assessment of the relative contri-
bution of SL and UG to language acquisition. These
include, more pertinent to the problem of word seg-
mentation:

• Can statistical learning be used in the acquisi-
tion of language-specific phonotactics, a pre-
requisite to syllabification and a prelude to
word segmentation?

• Given that prosodic constraints are critical for
the success of SL in word segmentation, future
work needs to quantify the availability of stress
information in spoken corpora.

• Can further experiments, carried over realistic
linguistic input, further tease apart the multi-
ple strategies used in word segmentation [14]?
What are the psychological mechanisms (algo-
rithms) that integrate these strategies?

• How does word segmentation, statistical or
otherwise, work for agglutinative (e.g., Turk-
ish) and polysynthetic languages (e.g. Mo-
hawk), where the division between words,
morphology, and syntax is quite different from
more clear-cut cases like English?

Computational modeling can make explicit the
balance between statistics and UG, and are in the
same vein as the recent findings [24] on when/where
SL is effective/possible. UG can help SL by
providing specific constraints on its application,
and modeling may raise new questions for fur-
ther experimental studies. In related work [6,7],
we have augmented traditional theories of UG–
derivational phonology, and the Principles and Pa-
rameters framework–with a component of statisti-
cal learning, with novel and desirable consequences.
Yet in all cases, statistical learning, while perhaps
domain-general, is constrained by what appears to
be innate and domain-specific knowledge of linguis-
tic structures, such that learning can operate on spe-
cific aspects of the input evidence
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