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Abstract

Naturalistic theories of language acquisition assume

learners to be endowed with some innate language

knowledge. The purpose of this innate knowledge

is to facilitate language acquisition by constrain-

ing a learner’s hypothesis space. This paper dis-

cusses a naturalistic learning system (a Categorial

Grammar Learner (CGL)) that differs from previous

learners (such as the Triggering Learning Algorithm

(TLA) (Gibson and Wexler, 1994)) by employing a

dynamic definition of the hypothesis-space which

is driven by the Bayesian Incremental Parameter

Setting algorithm (Briscoe, 1999). We compare

the efficiency of the TLA with the CGL when ac-

quiring an independently and identically distributed

English-like language in noiseless conditions. We

show that when convergence to the target gram-

mar occurs (which is not guaranteed), the expected

number of steps to convergence for the TLA is

shorter than that for the CGL initialized with uni-

form priors. However, the CGL converges more

reliably than the TLA. We discuss the trade-off of

efficiency against more reliable convergence to the

target grammar.

1 Introduction

A normal child acquires the language of her envi-

ronment without any specific training. Chomsky

(1965) claims that, given the “relatively slight ex-

posure” to examples and “remarkable complexity”

of language, it would be “an extraordinary intellec-

tual achievement” for a child to acquire a language

if not specifically designed to do so. His Argument

from the Poverty of the Stimulus suggests that if we

know X, and X is undetermined by learning expe-

rience then X must be innate. For an example con-

sider structure dependency in language syntax:

A question in English can be formed by invert-

ing the auxiliary verb and subject noun-phrase: (1a)

“Dinah was drinking a saucer of milk”; (1b) “was

Dinah drinking a saucer of milk?”

Upon exposure to this example, a child could hy-

pothesize infinitely many question-formation rules,

such as: (i) swap the first and second words in the

sentence; (ii) front the first auxiliary verb; (iii) front

words beginning with w.

The first two of these rules are refuted if the child

encounters the following: (2a) “the cat who was

grinning at Alice was disappearing”; (2b) “was the

cat who was grinning at Alice disappearing?”

If a child is to converge upon the correct hypoth-

esis unaided she must be exposed to sufficient ex-

amples so that all false hypotheses are refuted. Un-

fortunately such examples are not readily available

in child-directed speech; even the constructions in

examples (2a) and (2b) are rare (Legate, 1999). To

compensate for this lack of data Chomsky suggests

that some principles of language are already avail-

able in the child’s mind. For example, if the child

had innately “known” that all grammar rules are

structurally-dependent upon syntax she would never

have hypothesized rules (i) and (iii). Thus, Chom-

sky theorizes that a human mind contains a Univer-

sal Grammar which defines a hypothesis-space of

“legal” grammars.1 This hypothesis-space must be

both large enough to contain grammar’s for all of

the world’s languages and small enough to ensure

successful acquisition given the sparsity of data.

Language acquisition is the process of searching the

hypothesis-space for the grammar that most closely

describes the language of the environment. With

estimates of the number of living languages being

around 6800 (Ethnologue, 2004) it is not sensible to

model the hypothesis-space of grammars explicitly,

rather it must be modeled parametrically. Language

acquisition is then the process of setting these pa-

rameters. Chomsky (1981) suggested that param-

eters should represent points of variation between

languages, however the only requirement for pa-

rameters is that they define the current hypothesis-

space.

1Discussion of structural dependence as evidence of the Ar-

gument from the Poverty of Stimulus is illustrative, the sig-

nificance being that innate knowledge in any form will place

constraints on the hypothesis-space
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The properties of the parameters used by this

learner (the CGL) are as follows: (1) Parameters are

lexical; (2) Parameters are inheritance based; (3) Pa-

rameter setting is statistical.

1 - Lexical Parameters

The CGL employs parameter setting as a means

to acquire a lexicon; differing from other paramet-

ric learners, (such as the Triggering Learning Al-

gorithm (TLA) (Gibson and Wexler, 1994) and the

Structural Triggers Learner (STL) (Fodor, 1998b),

(Sakas and Fodor, 2001)) which acquire general

syntactic information rather than the syntactic prop-

erties associated with individual words.2

In particular, a categorial grammar is acquired.

The syntactic properties of a word are contained in

its lexical entry in the form of a syntactic category.

A word that may be used in multiple syntactic situ-

ations (or sub-categorization frames) will have mul-

tiple entries in the lexicon.

Syntactic categories are constructed from a finite

set of primitive categories combined with two op-

erators (/ and \) and are defined by their members
ability to combine with other constituents; thus con-

stituents may be thought of as either functions or

arguments.

The arguments of a functional constituent are

shown to the right of the operators and the result

to the left. The forward slash operator (/) indicates
that the argument must appear to the right of the

function and a backward slash (\) indicates that it
must appear on the left. Consider the following

CFG structure which describes the properties of a

transitive verb:

s → np vp

vp → tv np

tv → gets, finds, ...

Assume that there is a set of primitive categories

{s,np}. A vp must be in the category of func-

tional constituents that takes a np from the left and

returns an s. This can be written s\np. Likewise

a tv takes an np from the right and returns a vp

(whose type we already know). A tv may be writ-

ten (s\np)/np.

Rules may be used to combine categories. We

assume that our learner is innately endowed with the

rules of function application, function composition

and generalized weak permutation (Briscoe, 1999)

(see figures 1 and 2).

• Forward Application (>)
X/Y Y → X

2The concept of lexical parameters and the lexical-linking

of parameters is to be attributed to Borer (1984).

• Backward Application (<)
Y X\Y → X

• Forward Composition (> B)
X/Y Y/Z → X/Z

• Backward Composition (< B)
Y \X Z\Y → X\Z

• Generalized Weak Permutation (P )
((X | Y1)... | Yn) → ((X | Yn)... | Y1)
where | is a variable over \ and /.

Alice

np

may

(s\np)/(s\np)

eat

(s\np)/np
> B

(s\np)/np

the cake
·
·
·

np
>

s\np
<

s

Figure 1: Illustration of forward/backward applica-

tion (>, <) and forward composition (> B)

the

np/n

rabbit

n

that

(n\n)/(s/np)

she

np

saw

(s\np)/np
P

(s/np)\np
<

(s/np)
>

n\n
<

n
>

np

Figure 2: Illustration of generalized weak permuta-

tion (P )

The lexicon for a language will contain a finite

subset of all possible syntactic categories, the size of

which depends on the language. Steedman (2000)

suggests that for English the lexical functional cate-

gories never need more than five arguments and that

these are needed only in a limited number of cases

such as for the verb bet in the sentence I bet you five

pounds for England to win.

The categorial grammar parameters of the CGL

are concerned with defining the set of syntactic

categories present in the language of the environ-

ment. Converging on the correct set aids acquisition

by constraining the learner’s hypothesized syntactic

categories for an unknown word. A parameter (with



3

value of either ACTIVE or INACTIVE) is associ-

ated with every possible syntactic category to indi-

cate whether the learner considers the category to be

part of the target grammar.

Some previous parametric learners (TLA and

STL) have been primarily concerned with overall

syntactic phenomena rather than the syntactic prop-

erties of individual words. Movement parameters

(such as the V 2 parameter of the TLA) may be cap-
tured by the CGL using innate rules or multiple lex-

ical entries. For instance, Dutch and German word

order is captured by assuming that verbs in these

languages systematically have two categories, one

determining main clause order and the other subor-

dinate clause orders.

2 - Inheritance Based Parameters

The complex syntactic categories of a categorial

grammar are a sub-categorization of simpler cate-

gories; consequently categories may be arranged in

a hierarchy with more complex categories inheriting

from simpler ones. Figure 3 shows a fragment of a

possible hierarchy. This hierarchical organization of

parameters provides the learner with several bene-

fits: (1) The hierarchy can enforce an order on learn-

ing; constraints may be imposed such that a parent

parameter must be acquired before a child parame-

ter (for example, in Figure 3, the learner must ac-

quire intransitive verbs before transitive verbs may

be hypothesized). (2) Parameter values may be in-

herited as a method of acquisition. (3) The parame-

ters are stored efficiently.

s - ACTIVE
`````̀

      

s/s s\np - ACTIVE
X
X
X
XX

�
�
�
��

[s\np]/np - ACTIVE [s\np]/[s\np]

Figure 3: Partial hierarchy of syntactic categories.

Each category is associated with a parameter indi-

cating either ACTIVE or INACTIVE status.

3 - Statistical Parameter Setting

The learner uses a statistical method to track rela-

tive frequencies of parameter-setting-utterances in

the input.3 We use the Bayesian Incremental Pa-

rameter Setting (BIPS) algorithm (Briscoe, 1999)

to set the categorial parameters. Such an approach

sets the parameters to the values that are most likely

given all the accumulated evidence. This represents

3Other statistical parameter setting models include Yang’s

Variational model (2002) and the Guessing STL (Fodor, 1998a)

a compromise between two extremes: implementa-

tions of the TLA are memoryless allowing a param-

eter values to oscillate; some implementations of the

STL set a parameter once, for all time.

Using the BIPS algorithm, evidence from an in-

put utterance will either strengthen the current pa-

rameter settings or weaken them. Either way, there

is re-estimation of the probabilities associated with

possible parameter values. Values are only assigned

when sufficient evidence has been accumulated, i.e.

once the associated probability reaches a threshold

value. By employing this method, it becomes un-

likely for parameters to switch between settings as

the consequence of an erroneous utterance.

Another advantage of using a Bayesian approach

is that we may set default parameter values by as-

signing Bayesian priors; if a parameter’s default

value is strongly biased against the accumulated ev-

idence then it will be difficult to switch. Also, we no

longer need to worry about ambiguity in parameter-

setting-utterances (Clark, 1992) (Fodor, 1998b): the

Bayesian approach allows us to solve this problem

“for free” since indeterminacy just becomes another

case of error due to misclassification of input data

(Buttery and Briscoe, 2004).

2 Overview of the Categorial Grammar
Learner

The learning system is composed of a three mod-

ules: a semantics learning module, syntax learning

module and memory module. For each utterance

heard the learner receives an input stream of word

tokens paired with possible semantic hypotheses.

For example, on hearing the utterance “Dinah drinks

milk” the learner may receive the pairing: ({dinah,
drinks, milk}, drinks(dinah, milk)).

2.1 The Semantic Module

The semantic module attempts to learn the mapping

between word tokens and semantic symbols, build-

ing a lexicon containing the meaning associated

with each word sense. This is achieved by analyz-

ing each input utterance and its associated semantic

hypotheses using cross-situational techniques (fol-

lowing Siskind (1996)).

For a trivial example consider the utterances “Al-

ice laughs” and “Alice eats cookies”; they might

have word tokens paired with semantic expressions

as follows: ({alice, laughs}, laugh(alice)), ({alice,
eats, cookies}, eat(alice, cookies)).
From these two utterances it is possible to ascer-

tain that the meaning associated with the word token

alice must be alice since it is the only semantic ele-

ment that is common to both utterances.
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2.2 The Syntactic Module

The learning system links the semantic module and

syntactic module by using a typing assumption: the

semantic arity of a word is usually the same as its

number of syntactic arguments. For example, if it is

known that likes maps to like(x,y), then the typ-
ing assumption suggests that its syntactic category

will be in one of the following forms: a\b\c, a/b\c,
a\b/c, a/b/c or more concisely a | b | c (where a, b
and c may be basic or complex syntactic categories

themselves).

By employing the typing assumption the number

of arguments in a word’s syntactic category can be

hypothesized. Thus, the objective of the syntactic

module is to discover the arguments’ category types

and locations.

The module attempts to create valid parse trees

starting from the syntactic information already as-

sumed by the typing assumption (following But-

tery (2003)). A valid parse is one that adheres

to the rules of the categorial grammar as well as

the constraints imposed by the current settings of

the parameters. If a valid parse can not be found

the learner assumes the typing assumption to have

failed and backtracks to allow type raising.

2.3 Memory Module

The memory module records the current state of

the hypothesis-space. The syntactic module refers

to this information to place constraints upon which

syntactic categories may be hypothesized. The

module consists of two hierarchies of parameters

which may be set using the BIPS algorithm:

Categorial Parameters determine whether a cat-

egory is in use within the learner’s current model

of the input language. An inheritance hierarchy of

all possible syntactic categories (for up to five argu-

ments) is defined and a parameter associated with

each one (Villavicencio, 2002). Every parameter

(except those associated with primitive categories

such as S) is originally set to INACTIVE, i.e. no

categories (except primitives) are known upon the

commencement of learning. A categorial parameter

may only be set to ACTIVE if its parent category

is already active and there has been satisfactory ev-

idence that the associated category is present in the

language of the environment.

WordOrder Parameters determine the underly-

ing order in which constituents occur. They may be

set to either FORWARD or BACKWARD depend-

ing on whether the constituents involved are gen-

erally located to the right or left. An example is

the parameter that specifies the direction of the sub-

ject of a verb: if the language of the environment

is English this parameter would be set to BACK-

WARD since subjects generally appear to the left of

the verb. Evidence for the setting of word order pa-

rameters is collected from word order statistics of

the input language.

3 The acquisition of an English-type
language

The English-like language of the three-parameter

system studied by Gibson and Wexler has the

parameter settings and associated unembedded

surface-strings as shown in Figure 4. For this task

we assume that the surface-strings of the English-

like language are independent and identically dis-

tributed in the input to the learner.

Specifier Complement V2

0 (Left) 1 (Right) 0 (off )

1. Subj Verb

2. Subj Verb Obj

3. Subj Verb Obj Obj

4. Subj Aux Verb

5. Subj Aux Verb Obj

6. Subj Aux Verb Obj Obj

7. Adv Subj Verb

8. Adv Subj Verb Obj

9. Adv Subj Verb Obj Obj

10. Adv Subj Aux Verb

11. Adv Subj Aux Verb Obj

12. Adv Subj Aux Verb Obj Obj

Figure 4: Parameter settings and surface-strings of

Gibson and Wexler’s English-like Language.

3.1 Efficiency of Trigger Learning Algorithm

For the TLA to be successful it must converge to

the correct parameter settings of the English-like

language. Berwick and Niyogi (1996) modeled the

TLA as a Markov process (see Figure 5).

Using this model it is possible to calculate the

probability of converging to the target from each

starting grammar and the expected number of steps

before convergence.

Probability of Convergence:

Consider starting from Grammar 3, after the process
finishes looping it has a 3/5 probability of mov-
ing to Grammar 4 (from which it will never con-
verge) and a 2/5 probability of moving to Grammar
7 (from which it will definitely converge), therefore
there is a 40% probability of converging to the target
grammar when starting at Grammar 3.
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Expected number of Steps to Convergence:

Let Sn be the expected number of steps from state

n to the target state. For starting grammars 6, 7 and
8, which definitely converge, we know:

S6 = 1 +
5

6
S6 (1)

S7 = 1 +
2

3
S7 +

1

18
S8 (2)

S8 = 1 +
1

12
S6 +

1

36
S7 +

8

9
S8 (3)

and for the times when we do converge from gram-

mars 3 and 1 we can expect:

S1 = 1 +
3

5
S1 (4)

S3 = 1 +
31

33
S3 (5)

Figure 6 shows the probability of convergence and

expected number of steps to convergence for each

of the starting grammars. The expected number of

steps to convergence ranges from infinity (for start-

ing grammars 2 and 4) down to 2.5 for Grammar
1. If the distribution over the starting grammars is
uniform then the overall probability of converging

is the sum of the probabilities of converging from

each state divided by the total number of states:

1.00 + 1.00 + 1.00 + 1.00 + 0.40 + 0.66

8
= 0.63

(6)

and the expected number of steps given that you

converge is the weighted average of the number of

steps from each possibly converging state:

5.47 + 14.87 + 6 + 21.98 × 0.4 + 2.5 × 0.66

1.00 + 1.00 + 1.00 + 1.00 + 0.40 + 0.66
= 7.26

(7)

3.2 Efficiency of Categorial Grammar Learner

The input data to the CGL would usually be an ut-

terance annotated with a logical form; the only data

available here however, is surface-strings consist-

ing of word types. Hence, for the purpose of com-

parison with the TLA the semantic module of our

learner is by-passed; we assume that mappings to

semantic forms have previously been acquired and

that the subject and objects of surface-strings are

known. For example, given surface-string 1 (Subj

Verb) we assume the mapping Verb 7→ verb(x),

which provides Verbwith a syntactic category of the

form a|b by the typing assumption (where a, b are
unknown syntactic categories and | is an operator
over \ and /); we also assume Subj to map to a prim-
itive syntactic category SB, since it is the subject of
Verb.

The criteria for success for the CGL when acquir-

ing Gibson and Wexler’s English-like language is a

lexicon containing the following:4

Adv S/S Aux [S\SB]/[S\SB]
Obj OB Verb S\SB
Subj SB [S\SB]/OB

[[S\SB]/OB]/OB

where S (sentence), SB (subject) and OB (ob-
ject) are primitive categories which are innate to the

learner with SB and OB assumed to be derivable
from the semantic module.

During the learning process the CGL will have

constructed a category hierarchy by setting appro-

priate categorial parameters to true (see Figure 7).

The learner will have also constructed a word-order

hierarchy (Figure 8), setting parameters to FOR-

WARDor BACKWARD. These hierarchies are used

during the learning process to constrain hypothe-

sized syntactic categories. For this task the set-

ting of the word-order parameters becomes trivial

and their role in constraining hypotheses negligible;

consequently, the rest of our argument will relate to

categorial parameters only. For the purpose of this

gendir = /
a
a
a

!
!
!

subjdir = \ vargdir = /

Figure 8: Word-order parameter settings required to

parse Gibson and Wexler’s English-like language.

analysis parameters are initialized with uniform pri-

ors and are originally set INACTIVE. Since the in-

put is noiseless, the switching threshold is set such

that parameters may be set ACTIVE upon the evi-

dence from one surface-string.

It is a requirement of the parameter setting de-

vice that the parent-types of hypothesized syntax

categories are ACTIVE before new parameters are

set. Thus, the learner is not allowed to hypoth-

esize the syntactic category for a transitive verb

[[S\SB]/OB] before it has learnt the category for
an intransitive verb [S\SB]; this behaviour con-
strains over-generation. Additionally, it is usually

not possible to derive a word’s full syntactic cate-

gory (i.e. without any remaining unknowns) unless

it is the only new word in the clause.

As a consequence of these issues, the order in

which the surface-strings appear to the learner af-

4Note that the lexicon would usually contain orthographic

entries for the words in the language rather than word type en-

tries.
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fects the speed of acquisition. For instance, the

learner prefers to see the surface-string Subj Verb

before Subj Verb Obj so that it can acquire the

maximum information without wasting any strings.

For the English-type language described by Gib-

son and Wexler the learner can optimally acquire

the whole lexicon after seeing only 5 surface-strings
(one string needed for each new complex syntactic

category to be learnt). However, the strings appear

to the learner in a random order so it is necessary to

calculate the expected number of strings (or steps)

before convergence.

The learner must necessarily see the string Subj

Verb before it can learn any other information. With

12 surface-strings the probability of seeing Subj
Verb is 1/12 and the expected number of strings be-
fore it is seen is 12. The learner can now learn from
3 surface-strings: Subj Verb Obj, Subj Aux Verb and
Adv Subj Verb. Figure 9 shows a Markov structure

of the process. From the model we can calculate the

expected number of steps to converge to be 24.53.

4 Conclusions

The TLA and CGL were compared for efficiency

(expected number of steps to convergence) when

acquiring the English-type grammar of the three-

parameter system studied by Gibson and Wexler.

The expected number of steps for the TLA was

found to be 7.26 but the algorithm only converged
63% of the time. The expected number of steps for
the CGL is 24.53 but the learner converges more re-
liably; a trade off between efficiency and success.

With noiseless input the CGL can only fail if there

is insufficient input strings or if Bayesian priors are

heavily biased against the target. Furthermore, the

CGL can be made robust to noise by increasing the

probability threshold at which a parameter may be

set ACTIVE; the TLA has no mechanism for coping

with noisy data.

The CGL learns incrementally; the hypothesis-

space from which it can select possible syntactic

categories expands dynamically and, as a conse-

quence of the hierarchical structure of parameters,

the speed of acquisition increases over time. For

instance, in the starting state there is only a 1/12
probability of learning from surface-strings whereas

in state k (when all but one category has been ac-

quired) there is a 1/2 probability. It is likely that
with a more complex learning task the benefits of

this incremental approach will outweigh the slow

starting costs. Related work on the effects of incre-

mental learning on STL performance (Sakas, 2000)

draws similar conclusions. Future work hopes to

compare the CGL with other parametric learners

(such as the STL) in larger domains.
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Figure 5: Gibson and Wexler’s TLA as a Markov structure. Circles represent possible grammars (a config-

uration of parameter settings). The target grammar lies at the centre of the structure. Arrows represent the

possible transitions between grammars. Note that the TLA is constrained to only allow movement between

grammars that differ by one parameter value. The probability of moving between Grammar Gi and Gram-

marGj is a measure of the number of target surface-strings that are inGj but not Gi normalized by the total

number of target surface-strings as well as the number of alternate grammars the learner can move to. For

example the probability of moving from Grammar 3 to Grammar 7 is 2/12 ∗ 1/3 = 1/18 since there are 2
target surface-strings allowed by Grammar 7 that are not allowed by Grammar 3 out of a possible of 12 and
three grammars that differ from Grammar 3 by one parameter value.

Initial Language Initial Grammar Prob. of Converging Expected no. of Steps

VOS -V2 110 0.66 2.50

VOS +V2 111 0.00 n/a

OVS -V2 100 0.40 21.98

OVS +V2 101 0.00 n/a

SVO -V2 010 1.00 0.00

SVO +V2 011 1.00 6.00

SOV -V2 000 1.00 5.47

SOV +V2 001 1.00 14.87

Figure 6: Probability and expected number of steps to convergence from each starting grammar to an

English-like grammar (SVO -V2) when using the TLA.
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````̀

      

S/S S\SB
X
X
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[S\SB]/OB

[[S\SB]/OB]/OB

[S\SB]/[S\SB]

Figure 7: Category hierarchy required to parse Gibson and Wexler’s English-like language.

Figure 9: The CGL as a Markov structure. The states represent the set of known syntactic cate-

gories: state S - {}, state a - {S\SB}, state b - {S\SB, S/S}, state c - {S\SB, [S\SB]/OB},
state d - {S\SB, [S\SB]/[S\SB]}, state e - {S\SB, S/S, [S\SB]/OB}, state f - {S\SB,
[S\SB]/OB, [[S\SB]/OB]/OB}, state g - {S\SB, [S\SB]/[S\SB], S/S} state h - {S\SB,
[S\SB]/[S\SB], [S\SB]/OB}, state i - {S\SB, S/S, [S\SB]/OB, [S\SB]/[S\SB]}, state j -
{S\SB, S/S, [S\SB]/OB, [[S\SB]/OB]/OB}, state k - {S\SB, [S\SB]/OB, [[S\SB]/OB]/OB,
[S\SB]/[S\SB]}, state l - {S\SB, [S\SB]/OB, [[S\SB]/OB]/OB, [S\SB]/[S\SB], S/S}.




