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Because knowledge of words plays a crucial role in acquisition and children seem to accomplish word 

segmentation very early (~7.5 months (Jusczyk et al., 1999; Echols et al., 1997; Jusczyk et al., 1993a)), many 

strategies have been proposed for how children learn to identify words in their native language. Because of 

experimental evidence that infants are sensitive to statistical information in their environment (e.g. Saffran, Aslin 

& Newport, 1996) statistical strategies have seen a rise in popularity. Many recent statistical models of word 

segmentation have assumed one basic unit of representation available to the learner is the phoneme (e.g., 

Goldwater, Griffiths, Johnson 2009 (GGJ2009); Brent & Siskind, 1999; Johnson & Goldwater, 2009; Pearl, 

Goldwater & Steyvers, 2011 (PGS2011)). However, this supposes that learners have already discovered their 

language’s phonemic inventory, while experimental evidence suggests that this is not true for young infants 

(Jusczyk et al., 1993b; Jusczyk et al., 1994). Instead, syllables seem to be stronger representational units at this 

stage (Jusczyk & Derrah, 1987; Eimas, 1999; Saffran, Aslin & Newport, 1996). While the success of previous 

statistical word segmentation models is heartening, how dependent is that success on the assumption of the 

phoneme as a representational unit? With this question in mind, we modify existing, highly successful, phoneme-

based statistical models of word segmentation that use Bayesian inference (GGJ2009; PGS2011) to operate over 

syllables and so create a more psychologically faithful model of word segmentation. Interestingly, we find that 

these Bayesian word segmentation approaches are even more successful when operating over syllables, but only 

when learners assume words depend on the words before them (a bigram assumption). This demonstrates the 

robustness of this purely statistical approach, though only when certain assumptions hold. In addition, we 

replicate and extend results from PGS2011 concerning the surprising utility of processing constraints for 

Bayesian word segmentation strategies. 

 

All our modified Bayesian learners treat syllables as atomic units, with the idea that this is more psychologically 

faithful. In particular, this mimics the performance of infants who are able to discriminate between the three 

syllables /ba/, /bu/, and /lu/, but who are unable to recognize that /ba/ and /bu/ are more similar than /ba/ and /lu/ 

(Jusczyk & Derrah, 1987). While this alleviates the learning problem to some extent, because it reduces the 

number of potential segmentations, a potential sparse data problem then surfaces. In particular, while a model 

operating over English phonemes must track statistics between approximately 40 units of representation, a model 

operating over English syllables must deal with statistics between approximately 4000 units, while still using the 

same quantity of data as a phoneme-based model. Additionally, almost all phonotactic information about 

English, which can be helpful for word segmentation (Blanchard, Golinkoff & Heinz, 2010), is lost to the model. 

 
We test our syllable-based models using English child-directed speech from the Pearl-Brent corpus (CHILDES: 

MacWhinney, 2000). We restrict ourselves to child-directed utterances before 9 months, approximately 28,000 

utterances. We compare ideal learners, which have no processing constraints, to more psychologically plausible 

constrained learners that segment utterances as they are encountered and sometimes perform non-optimal 

statistical inference. Additionally, we compare modeled learners that assume words are produced independent of 

all other words (a unigram assumption (GGJ, 2009)) with modeled learners that assume a word depends on the 

word that occurred directly before it (a bigram assumption (GGJ, 2009)). 

 
All modeled learners use the Bayesian generative model framework described in GGJ (2009), which implicitly 

incorporates preferences for smaller lexicons and shorter words in the lexicon. The ideal learner uses Gibbs 

sampling to converge on the optimal word segmentation, and sees all utterances at once when making decisions 

about where boundaries should be placed. We compare this learner with a number of constrained learners 

implemented in PGS (2011). The Dynamic Programming Maximization (DPM) learner is motivated by the 

insight that linguistic processing is incremental, and so processes data as they appear, rather than in a batch. The 

DPM learner additionally uses the Viterbi algorithm to converge on the optimal word segmentation, based on the 



data already encountered. The Dynamic Programming Sampling (DPS) learner also makes decisions 

incrementally, but rather than necessarily choosing the optimal segmentation, it samples a potential segmentation 

probabilistically. Therefore, the optimal segmentation is most likely to be chosen, but occasionally the learner 

will select unlikely segmentations as well. The Decayed Markov Chain Monte Carlo (DMCMC) learner also 

processes data incrementally, but uses a modified form of Gibbs sampling to implement a recency effect, where 

more recent word boundaries are more likely to be sampled, mimicking memory constraints. 

 
Table 1 shows the results of these syllable-based learners, as compared with their previous phoneme-based 

counterparts. We measure our results in terms of precision, recall, and F-score (the harmonic mean) of individual 

word tokens, word boundaries, and lexicon items. We find that the phoneme-based learners perform better than 

the syllable-based learners when using the unigram assumption, with some of the syllable-based learners 

performing barely better than a simple syllable-based transitional probability learner. However, this trend is 

notably reversed when learners have the bigram assumption: all syllable-based learners significantly outperform 

the transitional probability learner, and most significantly outperform their phoneme-based counterparts. This 

suggests that syllable-based Bayesian inference is only a useful word segmentation strategy if children know that 

words depend on one another. Table 2 compares our results with those of Gambell & Yang (2006) a previous 

syllable-based model which incorporates stress information as well as the knowledge that words can contain 

only a single primary stress. By adding this linguistic knowledge they achieve higher performance than even our 

DMCMC learner. Their model, however, takes stress information from a pronunciation dictionary which does 

not reflect how words are stressed in spoken language. The model is therefore able to segment strings of 

monosyllabic words effortlessly, when in reality these strings may be quite difficult for children. 

 

In addition, there is empirical evidence that children undersegment the utterances they hear, grouping together 

commonly occurring words (Peters, 1983). Based on the boundary precision and recall scores, we can tell 

whether a particular modeled learner is undersegmenting. High boundary precision and low recall indicates that 

the learner is highly accurate when placing a boundary, but does not insert enough boundaries in general, thereby 

undersegmenting the corpus. As Table 1 shows, while only some of the phoneme-based Bayesian learners 

undersegment the data, we find that nearly all syllable-based learners – ideal and constrained – show 

undersegmentation behavior. Thus, syllable-based Bayesian learners match this empirical behavior better. 

 

Moreover, we also find support for the somewhat counter-intuitive “Less is More” hypothesis (Newport, 1990), 

where processing constraints placed on children are hypothesized to help, rather than hinder, language 

acquisition. In particular, while we do find that an ideal Bayesian learner with unlimited memory and processing 

resources can succeed, we crucially find results similar to PGS (2011) that constrained learners who learn 

incrementally and with limited memory, as in the case of actual children, outperform the ideal learner. While 

there is a literature in computer science on the benefits unsupervised models gain from online learning (Liang & 

Klein 2009), our model benefits not from online learning, but from suboptimal sampling (DPS learner) and 

memory constraints (DMCMC learner). This indicates that non-optimal segmentation strategies may be useful in 

acquiring word segmentation, although the reason for this behavior is still poorly understood. By examining the 

specific constrained strategies learners could use, and their resulting segmentation effects, we may be able to 

offer an explanation for why processing constraints could help language acquisition. A literature exists on “Less 

is More” findings in artificial language learning (Chin & Kersten 2010; Kersten & Earles 2001; Cochran et al. 

1999), but to the author’s knowledge there are no experiments that show why constrained processing helps in 

acquisition. This highlights one very major contribution computational modeling can make to developmental 

linguistics.  

 

In the broader picture, this study highlights the benefits of using empirical research from psychology to inform 

decisions on how to model language acquisition: not only can we identify the strategies that are likely to be used 

by children, but we may also discover potential explanations for existing, sometimes puzzling, observations 

about child language acquisition, as with the “Less is More” hypothesis. While our preliminary work focuses on 

a single English corpus, we plan on extending these models to multiple corpora across languages varied in their 

manner of syllabification. 

 



Unigram Models (words are independent) 

 TP TR TF BP BR BF LP LR LF 

Ideal-Pho 63.2 48.4 54.8 92.8 62.1 74.4 54.0 73.6 62.3 

Ideal-Syl 65.34 45.85 53.89 92.20 56.38 71.63 45.59 71.78 55.75 

DPM-Pho 63.7 68.4 65.9 77.2 85.3 81.0 61.9 56.9 59.3 

DPM-Syl 71.97 48.58 57.96 98.07 52.50 68.32 37.35 53.14 43.86 

DPS-Pho 55.0 62.6 58.5 70.4 84.2 76.7 54.8 49.2 51.8 

DPS-Syl 74.33 53.27 62.03 97.20 57.9 72.51 41.17 57.21 47.87 

DMCMC-Pho 71.2 64.7 67.8 88.8 77.2 82.6 61.0 69.6 65.0 

DMCMC-Syl 67.31 49.67 57.16 96.82 60.55 74.48 48.74 72.79 58.38 

Bigram Models (words depend on previous words) 

Ideal-Pho 74.5 68.8 71.5 90.1 80.4 85.0 65.0 73.5 69.1 

Ideal-Syl 81.84 72.08 76.65 96.05 79.67 87.09 65.27 79.06 71.50 

DPM-Pho 67.5 71.3 69.4 80.4 86.8 83.5 66.0 63.2 64.6 

DPM-Syl 81.49 68.57 74.46 96.67 74.84 84.35 56.96 70.46 62.99 

DPS-Pho 34.2 47.6 39.8 54.9 85.3 66.8 39.0 34.4 36.5 

DPS-Syl 82.96 71.34 76.70 96.48 77.20 85.75 57.83 71.23 63.83 

DMCMC-Pho 72.0 74.0 73.0 84.1 87.4 85.7 61.1 64.2 62.6 

DMCMC-Syl 87.19 85.23 86.19 94.01 91.05 92.49 74.18 77.28 75.70 

Comparison Models 

TransProb-Pho 34.3 42.7 38.0 52.8 71.1 60.6 24.3 39.7 30.1 

TransProb-Syl 53.03 37.57 43.98 90.00 53.14 66.82 11.72 63.08 19.77 

 
Table 1. Comparison of phoneme-based (-Pho) and syllable-based (-Syl) learners on three sets of measures: word 

tokens (T), word boundaries (B), and lexicon items (L). For each, precision (P), recall (R), and F-score (F) are 

shown. P = # correctly identified / # identified, R= # correctly identified / # should have been identified, F = 

harmonic mean of P and R ((2*P*R)/(P+R)). Ideal = optimal segmentation, batch learning. DPM = optimal 

segmentation, incremental learning. DPS = non-optimal segmentation, incremental learning. DMCMC = non-

optimal segmentation, incremental learning, recency effect. A syllabic transitional probability (TransProb) 

learner (based on Saffran, Aslin, & Newport (1996)) is provided as a baseline. 

 

Unigram Models (words are independent) 

 TP TR TF 

Ideal 65.34 45.85 53.89 

DPM 71.97 48.58 57.96 

DPS 74.33 53.27 62.03 

DMCMC 67.31 49.67 57.16 

Bigram Models (words depend on previous words) 

Ideal 81.84 72.08 76.65 

DPM 81.49 68.57 74.46 

DPS 82.96 71.34 76.70 

DMCMC 87.19 85.23 86.19 

Comparison Models 

TransProb 53.03 37.57 43.98 

TP (Brown) 41.6 23.3 29.8 

TP+USC (Brown) 73.5 71.2 72.3 

Algebraic agnostic (Brown) 85.9 89.9 87.9 

Algebraic random (Brown) 95.9 93.4 94.6 



 

Table 2. Comparison of our results against other syllable-based learners. 
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