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Preface

Welcome to PsychoCompLA-2007 held as part of the 29" meeting of the Cognitive
Science Society in Nashville Tennessee. This is the third meeting of the
Psychocomputational Models of Human Language Acquisition workshop following
PsychoCompLA-2004, held in Geneva, Switzerland as part of the 20™ International
Conference on Computational Linguistics (COLING 2004) and PsychoCompLA-2005 as
part of the 43" Annual Meeting of the Association for Computational Linguistics (ACL-
2005) held in Ann Arbor, Michigan where the workshop shared a joint session with the
Ninth Conference on Computational Natural Language Learning (CoNLL-2005).

Psychocomputational models of language acquisition are of particular interest in light of
recent results in developmental psychology that suggest that very young infants are adept at
detecting statistical patterns in an audible input stream. Though, how children might
plausibly apply statistical 'machinery’' to the task of grammar acquisition, with or without
an innate language component, remains an open and important question. One effective line
of investigation is to computationally model the acquisition process and determine
interrelationships between a model and linguistic or psycholinguistic theory, and/or
correlations between a model's performance and data from linguistic environments that
children are exposed to.

It is our belief that this approach will not only inform developmental and theoretical
linguistic research, but will also prove invaluable to research focused on cutting-edge
computer-human language technologies that may soon fall victim to a
psychocomputational bottleneck — in which machine learning techniques that are applied
without consideration of how humans learn and process language see decreasing marginal
success.

We would like to thank the invited speakers, both for agreeing to present and for reviewing
the submitted abstracts, as well as Mike Schoelles, Kevin Gluck, Jan Hathaway, and Terry
Love for their help and patience during pre-meeting organization and finally Hunter
College, CUNY and the Cognitive Science Society for funding.

William Gregory Sakas
David Guy Brizan

New York, July 2007
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Statistical Language Learning:
Computational and Maturational Constraints

Elissa L. Newport
George Eastman Professor of Brain & Cognitive Sciences
University of Rochester

In recent years a wide variety of studies have shown that infants, young children, and adults
can successfully utilize the statistics of distributional linguistic information to find
candidate words in a speech stream, form and alter phonetic categories, discover
grammatical categories, and acquire simple syntactic structure in miniature languages in
the laboratory. A major question we face, then, is how to think about the broader picture of
statistical learning: How many kinds of statistical computations can learners perform? How
are these computations organized, and how are they constrained? Must such mechanisms
be combined with qualitatively different, more traditional mechanisms that form symbolic
rules or set linguistic parameters?

I will address these questions by presenting findings from recent studies of statistical
learning of syntax, examining the effects of complex multiple cues and also comparing
child and adult learners given inconsistent input and (sometimes) forming rule-like
generalizations. The results of these studies suggest the outlines of several distinct but
suitably sophisticated candidate statistical learning mechanisms and raise questions for
future research regarding how to develop a theory of statistical language learning.

Lexical Learning and Change

Charles D. Yang
University of Pennsylvania

Language learning is a remarkably robust process. The child is exceptionally good at
recognizing systematic regularities even when faced with lexically and contextually
restricted exceptions. In this talk, we present a model that recognizes productive processes
and exceptions as such; accordingly, the learner can proceed to internalize these as
different kinds of linguistic knowledge. Along the way we draw connections with recent
work in artificial language experiments that explores how the learner derives linguistic
generalization. Finally, the learning model is extrapolated into a model of language change,
which may shed light on the interpretation of typological generalizations.



Progress in Unsupervised Language Acquisition

Shimon Edelman
Cornell University

To become full-fledged members of the linguistic community in which they are situated,
language learners must be able (1) to capture the structural regularities in the stream of
utterances to which they are exposed in the course of their interactions with other speakers,
and (2) to put these regularities to generative use. In the past several years, statistical
algorithms that recursively distill productive construction-like regularities from raw corpus
data became available (Adriaans and van Zaanen, 2004; Solan, Horn, Ruppin, and
Edelman, 2005; Sandbank, Edelman, and Ruppin, 2007). In particular, the ADIOS
algorithm (Solan et al., 2005) achieved unprecedented recall, precision, and perplexity
performance on a standard benchmark --- the Air Traffic Information System (ATIS)
corpus. More importantly, it exhibited 50% recall and 63% precision on withheld test data
in an experiment involving a large subset of the transcribed child-directed speech from
English CHILDES corpora (Brodsky, Waterfall, and Edelman, 2007). Another algorithm,
ConText (Sandbank et al., 2007), was recently shown to outperform ADIOS on ATIS.

Although these algorithms deal relatively well with two kinds of structural regularities,
namely collocations and complementary distribution classes, they are not as effective in
learning potentially long-range dependencies such as those that arise in gender and number
agreement. They also do not work well with corpora that contain a large proportion of
complex (multiple-clause) sentences. These limitations can be traced to certain
computational characteristics common to these algorithms, such as insensitivity to the head
structure of phrases and the lack of distinction between content and function words.
Addressing these issues could bring unsupervised language acquisition close to the limit of
what can be learned from corpus data alone. Beyond that, further progress would likely
require embodied, socially aware learning, of the kind that human babies excel in.
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Learnable Representations of Languages: Something Old and Something
New

Alex Clark,
Department of Computer Science,
Royal Holloway, University of London

Introduction

Context free grammars are appealing as a linguistic representation because of their
efficient, well understood parsing algorithms, the convergence with the class of push down
automata and their natural description as trees. However there are no general, efficient
algorithms for learning them from positive data, and given our current understanding of
grammatical inference we will never be able to learn more than restricted subclasses. If we
take the problem of language acquisition seriously, then this would appear to be a fatal
flaw.

In this paper, I will describe some research into other representations of languages, that
have both polynomial recognition algorithms, and can be learned from positive data alone
using polynomial amounts of data and computation. The first, using ideas from the 1950s,
is based on a formalisation of Zellig Harris's idea of substitutability and defines a learnable
subclass of context free grammars, that coincides with the ideas of reduction system. The
second approach, using more modern ideas from learning theory, is based on identifying
hyperplanes in a Hilbert space defined by a string kernel. In this system we can represent a
wide variety of languages including some mildly context sensitive languages that model
phenomena that occur in natural language. In both cases, we are able to prove efficient
learnability of the classes of languages concerned, and demonstrate in practice on small
data sets that the algorithms work correctly.

Substitutability

Zellig Harris method of distributional learning is often appealed to in current learning
algorithms, but it is normally used merely as a heuristic justification rather than as an
algorithm in itself. Harris equivocates between two formal definitions: “Here as throughout
these procedures X and Y are substitutable if for every utterance which includes X we can
find (or gain native acceptance for) an utterance which is identical except for having Y in
the place of X Harris (1947). This definition can be interpreted in two ways: the first is
identical to the syntactic congruence, a standard language theoretic definition: two strings
X,Y are congruent with respect to a language L iff it is the case that for every pair of
strings L, the string 1Xr is in L iff the string Yt is in L. The second interpretation is that
we have some pair of strings 1,r such that both 1Xr, and 1Yr are in the language (or some
sample of the language); clearly a much weaker requirement. The substitutable languages
are the subclass of context free languages where this latter weaker condition does in fact
imply the former, stronger criterion. Clark and Eyraud (2005,2006) established that this



class of languages can be learned using a very simple algorithm, where the non-terminals
of the target grammar correspond to the equivalence classes under this congruence.
Though the class of languages the algorithm can learn perfectly is limited, the algorithm is
still sufficiently powerful to learn the rule of auxiliary fronting in polar interrogatives from
a small data set. Crucially, the prior assumptions required to get this result appear to be
domain neutral.

Planar languages

A completely separate approach is to look to the theory of machine learning for
representations of languages that are learnable. By mapping strings into points in a high
dimensional feature space, we can consider languages being defined by regions of that
space: a string is in the language if its image lies in some region of feature space. If that
region is a plane, then the languages will be easy to learn, using standard techniques. The
kernel trick allows us to use very large or infinite dimensional feature spaces, and using
domain neutral string kernels, it transpires that we can represent and learn efficiently some
context sensitive languages, including those classic examples, such as Swiss German cross
serial dependencies, that established that natural languages are not weakly context free.

Conclusion

Finally, we will discuss how it is possible to integrate these two approaches, using
representations that are sensitive to more complex properties of words, making further
progress towards the long term research goal of identifying a large class of languages that
contains the natural languages, and is efficiently learnable from positive raw data, using
domain neutral algorithms.

Acknowledgements.

This paper describes joint work with Remi Eyraud, Chris Watkins and Christophe Costa
Florencio. Some of this was supported by a grant from the EU funded Pascal network of
excellence.
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Indirect Evidence and the Poverty of the Stimulus

Amy Perfors, Terry Regier and Josh Tenenbaum (MIT)
MIT, University of Chicago and MIT

The Poverty of the Stimulus (PoS) argument holds that children do not receive enough
evidence to infer the existence of core aspects of language. We argue that Bayesian
methods of grammar induction and model selection can be useful in evaluating PoS
arguments, and that these methods suggest a new approach to classic questions of
innateness. Because they incorporate sophisticated statistical inference mechanisms that
can operate over structured representations of knowledge (such as generative grammars),
they allow us to rigorously explore a relatively uncharted region of the theoretical
landscape: the possibility that genuinely structured knowledge is genuinely learned. We
apply this approach to a specific version of the PoS argument, and show that a rational
learner faced with typical child-directed input and without initial language specific biases
could learn that linguistic rules depend on hierarchical phrase structure. This enables a
learner to master aspects of syntax, such as the auxiliary fronting rule in interrogative
formation, even without having heard the sort of data traditionally assumed to be necessary
for learning. Our results suggest that it does not make sense to ask whether a specific
generalization is based on innate knowledge when that generalization is part of a much
larger system of knowledge (such as the grammar of a natural language) that is acquired as
a whole. Abstract organizational principles can be induced based on indirect evidence
from one part of a system and effectively transferred to constrain learning of other parts of
a system.

The Great (Penn TreeBank) Robbery: When Statistics is not Enough

Robert C. Berwick, Michael Coen, Sandiway Fong, and Partha Niyogi
MIT, University of Wisconsin, University of Arizona, University of Chicago

Over the past 15 years, there has been increasing use of linguistically-annotated sentences collections such as
the LDC Penn Tree Bank (PTB) for constructing statistically-based parsers. While these parsers have usually
been built for engineering purposes, it has sometimes been suggested, either implicitly or explicitly, that such
approaches will either solve or point the way to solutions for the problem of human language acquisition,
particularly in the area of broad syntactic coverage. In this paper we examine this possibility critically,
assessing how well such methods can actually approach human/child competence. We find that all
approaches actually do quite poorly in this respect.

Our basic findings include these:

e Testing on standard linguistic ungrammatical sentences, reveals that such systems generalize
extremely poorly, making errors that are never attested by children. For example, on the 314 test
sentences drawn from Lasnik and Uriagereka (1988) as used by Fong (1990), many grammatical
examples cannot be successfully parsed and many ungrammatical examples are readily parsed. Even
a simple example such as “John continues stocks” is taken to be ‘grammatical’ with a probability
score close to that of “John sold stocks.” Perhaps more well-known is that empty categories are not
really treated properly, thus often leaving the assignment of thematic roles incorrect. Thus there is a
strong sense in which these trained systems have attained a very impoverished 'knowledge of
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language,' indeed do not even begin to approach the basic competence that children attain by ages 3-
-5.

While the addition of a statistical inference component has often been claimed as offering the
promise of robustness in the face of noise and the idiosyncrasies of exceptions in the learning input,
in fact the resulting parsers seem to be just as “fragile” as hand-built systems. For example, a single
altered training example sentence out of the 39,832 in the training set can greatly alter basic system
parsing performance, forcing PP attachment to be ‘high’ rather than ‘low.” This kind of behavior,
extremely sensitive to the specific distributional details of the input data, does not seem compatible
with the robust character of child language acquisition.

The claim of broad coverage and robust generalization, as opposed to the (supposedly) more narrow
linguistically-based treatments also seems suspect. Many common systematic regularities that have
syntactic reflexes, such as the verb alternation classes extensively discussed by Levin (1993) are not
and probably cannot be ‘discovered’ by the current methodology. To take but one example from
Levin out of many, “bounce” is a member of the causative/inchoative class. According to Levin,
this class admits “Jane bounced the ball" but bars “Jane bounced at the ball.” However, current
systems assign the second, unacceptable sentence a higher probability score than the first. The same
is true for middle constructions. Since these examples cause no seeming difficulty for human
speakers, again there seems to be a large gap between the generalizations the systems can make and
what people do.

More generally and importantly, the reason for such failings as the one above seems to be that,
contrary to the terminology often highlighted in conjunction with such systems, they are not, in fact
“exicalized.” Here we take the term “lexicalized” to mean that the information in the lexicon, viz.,
subcategorization, selectional information, and the like, is taken as primary, with phrase structure
rules consequently being informationally redundant, as suggested since the late 1960s and as adopted
by many current linguistic approaches. When examined closely, the statistical systems in fact cannot
weight properly the particular, detailed lexical properties of ‘bounce’ vs. other verbs. Rather, they
focus on the presence or absence a particular syntactic configuration, e.g., V-PPs, to the exclusion of
other information. Given this fundamental limitation they cannot discriminate among lexically-
grounded alternation classes.

As has been pointed out by others, the PTB is both too large and too small for adequate
generalization to mirror that of children or adults. On the one hand, the PTB has enormous
redundancy, since it is based on 49,208 sentences from a syntactically repetitive source: Wall Street
Journal articles. The resulting sparseness means that the that the training corpus does not even begin
to cover the syntactic richness of English. Therefore, smoothing becomes critical and determines
much of the resulting systems' behavior; some of the mismatches between system and human
judgments are not artifacts of data, but artifacts of smoothing the data. Since the ‘covering density’
of examples is not adequate to span the space of English possibilities, constructions that are readily
parsed by people without prior exposure are completely misparsed by such systems. The result again
is that generalization is poor, not robust. One classic example are parasitic gap constructions, though
there are many others. For example, in nearly-minimal pairs such as “Everyone that John knows
Mary likes/Everyone that John knows likes Mary,” such systems incorrectly parse the first example
with “Mary” as the object of “likes” (rather than the subject of the main clause). On the other hand,
the large size of the PTB, due to its repetitive syntactic constructions, means that in many cases
patterns like V-NP-PP often dominate lexical details, as noted above.

Such statistical systems easily learn unnatural languages just as readily and with just as much
accuracy as natural languages. They easily learn languages with syntactically bizarre forms, and
withjust as high precision and recall. For example, no known human language alternates its verbs as
head-first in some clauses, and head-final in others, randomized in a 50-50 fashion. Yet the statistical
systems trained on such non-natural languages learn and test just as well on this unnatural input.
Similarly, interchanging arguments and adjuncts so that adjuncts are next to verbs, and arguments
distant, contrary to natural language syntax, is just as “natural’ for these systems — just as easily
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learned and as accurately parsed. Combining this unnatural argument-adjunct reversal with
randomized head-first/head-final patterns is also just as easily learned and parsed. Indeed, we have
yet to find a pattern, however unnatural, that these systems cannot readily learn and parse. While for
some this might be taken as a sign of engineering ‘flexibility,” this behavior seems at odds with the
restrictions found in human acquisition, which does not display such lability (see N. Smith 1988 and
A. Moro 2007 among others for human experiments and fMRI studies confirming these restrictions).
The bottom line is that the statistically-based inference systems appear to be driven by the vagaries
of the distributional pattern of external data to an degree not attested by human language
acquisition, similar to the findings of Yang (2002).

e The probability scores these systems assign to sentences after parsing often meant to reflect
‘likelihood’ as something akin to ‘grammaticality’ but often these values do not square with natural
grammaticality judgments. Thus the simple equating of ‘likelihood’ with ‘grammaticality,” often
explicit or implicit in much of this work, does not in our view appear to hold. Some examples have
already been given above, but there are a host of others. For example, the nearly minimal
grammatical/ungrammatical pairs with radical case assignment violations, such as “I am proud of
John/I am proud John” are assigned identical probability scores, even despite the general
probabilistic penalty assigned to longer sentences (here the grammatical one) over shorter ones (here
the ungrammatical one).

Semantic Heads for Grammar Induction

Andrew M. Olney
Institute for Intelligent Systems

University of Memphis
Abstract

Olney (2007) presents an unsupervised grammar induction model that uses semantic similarity to induce
syntactic structure. A key element of this model is the operational definition of syntactic heads as being
semantically substitutable for their phrases. This paper describes the history of this operational definition for
heads and tests its validity with respect to four computational implementations. The paper concludes with
implications for these results on the operational definition of heads proposed by theoretical linguists as well
as the model presented by Olney (2007).

1 Introduction

Previous work on unsupervised grammar induction [1, 3, 11 ] has made use of the distributional hypothesis
[9 ], which characterizes words by their contexts. Under the distributional hypothesis, a phrase that occurs in
the same environments as a single word, i.e. has a similar distribution, is likely to be have the same syntactic
function as the single word. Hierarchical descriptions of sentences can then be built by attaching such
phrases to a higher level node (represented by the single substituting word) until only a single root node
remains [1 ].

Olney (2007) recently proposed a semantically-oriented model based on the distributional hypothesis.
This model is distinguished from previous models in that it does not make use of part of speech tags or
nonterminal nodes, yet it still manages to significantly outperform a right branching baseline. A key
element of this model is the operational definition of syntactic heads as being semantically substitutable
for their dependents, as discussed in the theoretical linguistics literature [17 , 10 , 4]. This paper explores
using semantic substitutability to determine syntactic heads and presents perhaps the first computational
evaluation of this notion.

2 Semantic Heads

Heads are theoretically-motivated linguistic elements with a primary role in syntactic description. In X-bar
theory, a phrase contains a single head which determines the syntactic type of the phrase [2 ]. In dependency
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grammars, heads have a similar role, except that syntactic relations exists solely between words [16 ]. The
importance of heads across these theories suggests that the proper identification of heads is of central
importance to a language learner.

Despite the wide use of heads and head-like notions in syntactic theory, there has been much debate as to
precisely what a head is [17 , 10 , 4 ]. However, some agreement exists on a loose semantic definition of
head: X is a head of X+Y if X describes a kind of thing described by X+Y [17, 10,4 ]. Beyond this initial
agreement, differences emerge. Zwicky (1985) equates a kind of with semantic arguments. He argues
that "green car" describes a kind of car, rather than a kind of green. This example is endocentric,
since the head, "car" appears within the phrase "green car." Hudson (1987) makes the opposite claim, that a
kind of refers to semantic functors, e.g. "on the desk" refers to a kind of location rather than a kind of desk.
This example is exocentric, since the meaning "location" is not directly attributable to any particular word in
"on the desk," but to the phrase as a whole. Croft (1996) unites these two perspectives by noting that
semantic functors are heads for government relationships and semantic arguments are heads for modification
relationships.

Given the theoretical importance a kind of has in identifying heads, it is worthwhile exploring
machine learning methods that can acquire this kind of knowledge. In particular, Latent Semantic Analysis
(LSA) is a vector space method capable of measuring the similarity between words and collections of words
[5,6,12]. LSA has been shown to closely approximate vocabulary acquisition in children [12 ], grade
essays as reliably as experts in English composition [7 ], and understand student contributions in tutorial
dialogue [8, 14 ]. These results are particularly impressive considering that LSA creates its knowledge
representation without human intervention.

3 Methodology

We present four methods for identifying heads using LSA. The basic methodology is to create an LSA space
and to compare the semantic similarity of a dependency pair's elements to the whole. For example, "green"
and "car" would both be compared with "green car." Using the Penn Treebank [13 ], heads found using these
four methods are compared with manually identified heads.

The four methods presented use this basic methodology along the dimensions +/- order and +/-
endocentric. The ordered methods use unigrams and bigrams as basic elements, inherently preserving
word order. The minus endocentric, or exocentric, methods do not compare a dependency element to
the whole, but rather to the nearest unigram neighbor of the whole. For example "in bed" may have a
nearest unigram neighbor, "sleepy," which is more similar to "bed" than to "in." Furthermore, the
construction of the LSA spaces varied in terms of local and global context. Global context represents the
traditional LSA calculation, in which cell;j denotes the number of times term; appeared in document;. In local
context, cell;; is the number of times term; occurred before the target term;, and the value of cell;j+y) is the
number of times term; occurred after the target term;, where n is the number of terms in the corpus. Both
local and global spaces were constructed using both unigrams and bigrams as terms to preserve word order.

Table 1. Head Discrimination Results for WSJ10

IMethod Local Context Global Context
Ordered/Endocentric  Percentage Correct  Percentage Correct
- /- 42.3% 41.7%
-i+ 42.3% 416%
+/- 55.8% 39.0%
+/+ 57.3% 3T A%

4 Results & Discussion

Results in Table 1 show that only the ordered methods were significantly better than chance, and that
unordered methods were significantly worse (p =.05). There was no significant difference between
endocentric and exocentric methods (p = .05). These results suggest that LSA is capturing "a kind of "-like
information on a more abstract level than endocentric and exocentric, which would make LSA similarity
closer to the loose semantic definition of head described in the literature [17, 10, 4 ]. However, the low
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overall discriminability of LSA, 57% in the best case, further suggests that semantic similarity is not the only
factor in determining headhood. It appears likely that there is another element to determining headness that is
missing from the discussion amongst theoretical linguists.

These results have similar significance to the model proposed by Olney (2007). It is somewhat
surprising that this model can outperform a right branching baseline even though the method of determining
headhood has a weak discriminability of 57%. It seems likely therefore that an improvement in the
ability to determine heads will be a major source of improvement in this model.
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Computational models of bilingual language processing are in the early stages of
investigating various issues such as degree of language independence, cross linguistic
positive transfer and interference, contexts of acquisition, and modality (speaking, writing,
comprehension) specificity (Thomas & van Heuven, 2005). Models of adult bilingual word
recognition (Dijkstra & Van Heuven, 1998) and speech perception (Lewy & Grosjean,
1997) have been developed. In addition, Thomas, (1997) developed the BSN model which
is a developmental distributed model of word recognition that includes mapping of
orthography and semantics with a language context layer.

The model presented here simulates and compares the bilingual and monolingual reading
development of native Spanish speakers learning English as a second language (L2). By
varying the training contexts we explore differences in English reading outcomes. Contexts
differed by: sequence of training, degree of English (L2) word learning training, and
whether or not the model is trained in Spanish (L1) word reading before English word
reading. Simulations 1 and 2 model simultaneous bilingualism. Simulations 3 and 4 model
sequential bilingualism with complete L2 word learning training, and simulations 5 and 6
model sequential bilingualism with partial L2 word learning training.

The architecture consists of a phonology layer, an orthography layer and a semantics layers
with hidden layers connecting all layers. The design assumes the two languages are stored
in a single common representational resource and become distinguishable through
language-specific information. Language separation is seen as emerging in the process of
learning respective regularities in Spanish and English input. The input was created from
Spanish and English phonemes accounting for phonotactic regularities and the degree of
overlap between the two languages. Multisyllabic words were used which enabled the
modeling of differences in word length and stress patterns of English and Spanish. Fifty
items in each language were constructed using both vowel and stress centering.

Results for the simultaneous bilingual model suggest intramodality facilitation effects, as it
did not take twice as long for the model to reach criteria in bilingual word reading as it did
to reach criteria for English word reading only. Comparisons of simulations 3 and 4 to
simulations 5 and 6 also showed positive transfer of Spanish reading to English reading
even when levels of English word learning varied. Models receiving initial word reading
training in Spanish reached English word reading criteria in half the number of training
epochs regardless of whether English word learning was partial or reached criteria.

To our best knowledge, our model is the first developmental computational model of
bilingual word reading that incorporates phonology, orthography and semantics without the
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use of a language context layer. In addition, by first training the distributed network on
word learning (phonology to semantics) and subsequently on word reading (orthography to
phonology) we take the modeling of development one step further. The intent was to more
realistically model the relationship between oral language skills and reading development.
Consideration was also given to real-world situations in which English language learners
find themselves in current educational contexts.

Learning Rate English Reading

18
15

12 1

Epochs of Training to Read English

100% Eng Speak 50% Eng Speak 100% Eng Speak 50% Eng Speak
NO SPANISH READING READS SPANISH FIRST

Figure 1: Comparison of Learning Rate
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