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Preface 
 
Welcome to PsychoCompLA-2007 held as part of the 29th meeting of the Cognitive 
Science Society in Nashville Tennessee. This is the third meeting of the 
Psychocomputational Models of Human Language Acquisition workshop following 
PsychoCompLA-2004, held in Geneva, Switzerland as part of the 20th International 
Conference on Computational Linguistics (COLING 2004) and PsychoCompLA-2005 as 
part of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-
2005) held in Ann Arbor, Michigan where the workshop shared a joint session with the 
Ninth Conference on Computational Natural Language Learning (CoNLL-2005). 
 
Psychocomputational models of language acquisition are of particular interest in light of 
recent results in developmental psychology that suggest that very young infants are adept at 
detecting statistical patterns in an audible input stream. Though, how children might 
plausibly apply statistical 'machinery' to the task of grammar acquisition, with or without 
an innate language component, remains an open and important question. One effective line 
of investigation is to computationally model the acquisition process and determine 
interrelationships between a model and linguistic or psycholinguistic theory, and/or 
correlations between a model's performance and data from linguistic environments that 
children are exposed to. 
 
It is our belief that this approach will not only inform developmental and theoretical 
linguistic research, but will also prove invaluable to research focused on cutting-edge 
computer-human language technologies that may soon fall victim to a 
psychocomputational bottleneck – in which machine learning techniques that are applied 
without consideration of how humans learn and process language see decreasing marginal 
success. 
 
We would like to thank the invited speakers, both for agreeing to present and for reviewing 
the submitted abstracts, as well as Mike Schoelles, Kevin Gluck, Jan Hathaway, and Terry 
Love for their help and patience during pre-meeting organization and finally Hunter 
College, CUNY and the Cognitive Science Society for funding.  
 
William Gregory Sakas 
David Guy Brizan 
 
New York, July 2007 
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Statistical Language Learning: 
Computational and Maturational Constraints 

 
Elissa L. Newport 

George Eastman Professor of Brain & Cognitive Sciences 
University of Rochester 

 
In recent years a wide variety of studies have shown that infants, young children, and adults 
can successfully utilize the statistics of distributional linguistic information to find 
candidate words in a speech stream, form and alter phonetic categories, discover 
grammatical categories, and acquire simple syntactic structure in miniature languages in 
the laboratory. A major question we face, then, is how to think about the broader picture of 
statistical learning: How many kinds of statistical computations can learners perform? How 
are these computations organized, and how are they constrained? Must such mechanisms 
be combined with qualitatively different, more traditional mechanisms that form symbolic 
rules or set linguistic parameters?  
 
I will address these questions by presenting findings from recent studies of statistical 
learning of syntax, examining the effects of complex multiple cues and also comparing 
child and adult learners given inconsistent input and (sometimes) forming rule-like 
generalizations. The results of these studies suggest the outlines of several distinct but 
suitably sophisticated candidate statistical learning mechanisms and raise questions for 
future research regarding how to develop a theory of statistical language learning. 
 
 

Lexical Learning and Change 
 

Charles D. Yang 
University of Pennsylvania 

 
Language learning is a remarkably robust process. The child is exceptionally good at 
recognizing systematic regularities even when faced with lexically and contextually 
restricted exceptions. In this talk, we present a model that recognizes productive processes 
and exceptions as such; accordingly, the learner can proceed to internalize these as 
different kinds of linguistic knowledge. Along the way we draw connections with recent 
work in artificial language experiments that explores how the learner derives linguistic 
generalization. Finally, the learning model is extrapolated into a model of language change, 
which may shed light on the interpretation of typological generalizations. 
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Progress in Unsupervised Language Acquisition 
 

Shimon Edelman 
Cornell University 

 
To become full-fledged members of the linguistic community in which they are situated, 
language learners must be able (1) to capture the structural regularities in the stream of 
utterances to which they are exposed in the course of their interactions with other speakers, 
and (2) to put these regularities to generative use.  In the past several years, statistical 
algorithms that recursively distill productive construction-like regularities from raw corpus 
data became available (Adriaans and van Zaanen, 2004; Solan, Horn, Ruppin, and 
Edelman, 2005; Sandbank, Edelman, and Ruppin, 2007). In particular, the ADIOS 
algorithm (Solan et al., 2005) achieved unprecedented recall, precision, and perplexity 
performance on a standard benchmark --- the Air Traffic Information System (ATIS) 
corpus. More importantly, it exhibited 50% recall and 63% precision on withheld test data 
in an experiment involving a large subset of the transcribed child-directed speech from 
English CHILDES corpora (Brodsky, Waterfall, and Edelman, 2007).  Another algorithm, 
ConText (Sandbank et al., 2007), was recently shown to outperform ADIOS on ATIS. 
 
Although these algorithms deal relatively well with two kinds of structural regularities, 
namely collocations and complementary distribution classes, they are not as effective in 
learning potentially long-range dependencies such as those that arise in gender and number 
agreement.  They also do not work well with corpora that contain a large proportion of 
complex (multiple-clause) sentences. These limitations can be traced to certain 
computational characteristics common to these algorithms, such as insensitivity to the head 
structure of phrases and the lack of distinction between content and function words.  
Addressing these issues could bring unsupervised language acquisition close to the limit of 
what can be learned from corpus data alone. Beyond that, further progress would likely 
require embodied, socially aware learning, of the kind that human babies excel in. 
 
References 
 
Adriaans, P. and M. van Zaanen, Computational Grammar Induction for Linguists, 

Grammars 7:57-68 (2004). 
 

Brodsky, P., H. Waterfall, and S. Edelman, Characterizing Motherese: On the 
Computational Structure of Child-Directed Language, Proc. Cognitive Science Society 
Conference (2007, in press). 

 

Sandbank, B., S. Edelman, and E. Ruppin, From ConText to grammar: a step towards 
practical probabilistic context free grammar inference, Proc. Israeli Conference on 
Computational Linguistics (2007, in press). 

 

Solan, Z., D. Horn, D., E. Ruppin, and S. Edelman, Unsupervised learning of natural 
languages. Proceedings of the National Academy of Science, 102:11629-11634 (2005). 
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Learnable Representations of Languages: Something Old and Something 

New 
 

Alex Clark, 
Department of Computer Science, 

Royal Holloway, University of London 
 
Introduction 
 
Context free grammars are appealing as a linguistic representation because of their 
efficient, well understood parsing algorithms, the convergence with the class of push down 
automata and their natural description as trees.  However there are no general, efficient 
algorithms for learning them from positive data, and given our current understanding of 
grammatical inference we will never be able to learn more than restricted subclasses. If we 
take the problem of language acquisition seriously, then this would appear to be a fatal 
flaw. 
 
In this paper, I will describe some research into other representations of languages, that 
have both polynomial recognition algorithms, and can be learned from positive data alone 
using polynomial amounts of data and computation. The first, using ideas from the 1950s, 
is based on a formalisation of Zellig Harris's idea of substitutability and defines a learnable 
subclass of context free grammars, that coincides with the ideas of reduction system. The 
second approach, using more modern ideas from learning theory,  is based on identifying 
hyperplanes in a Hilbert space defined by a string kernel. In this system we can represent a 
wide variety of languages including some mildly context sensitive languages that model 
phenomena that occur in natural language. In both cases, we are able to prove efficient 
learnability of the classes of languages concerned, and demonstrate in practice on small 
data sets that the algorithms work correctly.  
 
Substitutability 
 
Zellig Harris method of distributional learning is often appealed to in current learning 
algorithms, but it is normally used merely as a heuristic justification rather than as an 
algorithm in itself. Harris equivocates between two formal definitions: “Here as throughout 
these procedures X and Y are substitutable if for every utterance which includes X we can 
find (or gain native acceptance for) an utterance which is identical except for having Y in 
the place of X”  Harris (1947). This definition can be interpreted in two ways: the first is 
identical to the syntactic congruence, a standard language theoretic definition: two strings 
X,Y are congruent with respect to a language L iff it is the case that for every pair of 
strings l,r, the string lXr is in L iff the string lYr is in L. The second interpretation is that 
we have some pair of strings l,r such that both lXr, and lYr are in the language (or some 
sample of the language); clearly a much weaker requirement. The substitutable languages 
are the subclass of context free languages where this latter weaker condition does in fact 
imply the former, stronger criterion. Clark and Eyraud (2005,2006) established that this 
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class of languages can be learned using a very simple algorithm, where the non-terminals 
of the target grammar correspond to the equivalence classes under this congruence.  
Though the class of languages the algorithm can learn perfectly is limited, the algorithm is 
still sufficiently powerful to learn the rule of auxiliary fronting in polar interrogatives from 
a small data set. Crucially, the prior assumptions required to get this result appear to be 
domain neutral. 
 
Planar languages 
 
A completely separate approach is to look to the theory of machine learning for 
representations of languages that are learnable. By mapping strings into points in a high 
dimensional feature space, we can consider languages being defined by regions of that 
space: a string is in the language if its image lies in some region of feature space. If that 
region is a plane, then the languages will be easy to learn, using standard techniques. The 
kernel trick allows us to use very large or infinite dimensional feature spaces, and using 
domain neutral string kernels, it transpires that we can represent and learn efficiently some 
context sensitive languages, including those classic examples, such as Swiss German cross 
serial dependencies, that established that natural languages are not weakly context free.  
 
Conclusion 
 
Finally, we will discuss how it is possible to integrate these two approaches, using 
representations that are sensitive to more complex properties of words, making further 
progress towards the long term research goal of identifying a large class of languages that 
contains the natural languages, and is efficiently learnable from positive raw data, using 
domain neutral algorithms.  
 
Acknowledgements. 
 
This paper describes joint work with Remi Eyraud, Chris Watkins and Christophe Costa 
Florencio. Some of this was supported by a grant from the EU funded Pascal network of 
excellence. 
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Indirect Evidence and the Poverty of the Stimulus 
 

Amy Perfors, Terry Regier and Josh Tenenbaum (MIT) 
MIT, University of Chicago and MIT 

 
The Poverty of the Stimulus (PoS) argument holds that children do not receive enough 
evidence to infer the existence of core aspects of language.  We argue that Bayesian 
methods of grammar induction and model selection can be useful in evaluating PoS 
arguments, and that these methods suggest a new approach to classic questions of 
innateness.  Because they incorporate sophisticated statistical inference mechanisms that 
can operate over structured representations of knowledge (such as generative grammars), 
they allow us to rigorously explore a relatively uncharted region of the theoretical 
landscape: the possibility that genuinely structured knowledge is genuinely learned.  We 
apply this approach to a specific version of the PoS argument, and show that a rational 
learner faced with typical child-directed input and without initial language specific biases 
could learn that linguistic rules depend on hierarchical phrase structure.  This enables a 
learner to master aspects of syntax, such as the auxiliary fronting rule in interrogative 
formation, even without having heard the sort of data traditionally assumed to be necessary 
for learning.  Our results suggest that it does not make sense to ask whether a specific 
generalization is based on innate knowledge when that generalization is part of a much 
larger system of knowledge (such as the grammar of a natural language) that is acquired as 
a whole.  Abstract organizational principles can be induced based on indirect evidence 
from one part of a system and effectively transferred to constrain learning of other parts of 
a system. 
 

The Great (Penn TreeBank) Robbery: When Statistics is not Enough 
 

Robert C. Berwick, Michael Coen, Sandiway Fong, and Partha Niyogi 
MIT, University of Wisconsin, University of Arizona, University of Chicago 

 
Over the past 15 years, there has been increasing use of linguistically-annotated sentences collections such as 
the LDC Penn Tree Bank (PTB) for constructing statistically-based parsers.  While these parsers have usually 
been built for engineering purposes, it has sometimes been suggested, either implicitly or explicitly, that such 
approaches will either solve or point the way to solutions for the problem of human language acquisition, 
particularly in the area of broad syntactic coverage.  In this paper we examine this possibility critically, 
assessing how well such methods can actually approach human/child competence.  We find that all 
approaches actually do quite poorly in this respect. 
 
Our basic findings include these:  
 

• Testing on standard linguistic ungrammatical sentences, reveals that such systems generalize 
extremely poorly, making errors that are never attested by children. For example, on the 314 test 
sentences drawn from Lasnik and Uriagereka (1988) as used by Fong (1990), many grammatical 
examples cannot be successfully parsed and many ungrammatical examples are readily parsed.  Even 
a simple example such as “John continues stocks” is taken to be ‘grammatical’ with a probability 
score close to that of  “John sold stocks.” Perhaps more well-known is that empty categories are not 
really treated properly, thus often leaving the assignment of thematic roles incorrect. Thus there is a 
strong sense in which these trained systems have attained a very impoverished 'knowledge of 
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language,' indeed do not even begin to approach the basic competence that children attain by ages 3-
-5. 

 
• While the addition of a statistical inference component has  often been claimed as offering the 

promise of robustness in the face of noise and the idiosyncrasies of exceptions in the learning input, 
in fact the resulting parsers seem to be just as “fragile” as hand-built systems.  For example, a single 
altered training example sentence out of the 39,832 in the training set can greatly alter basic system 
parsing performance, forcing PP attachment to be ‘high’ rather than ‘low.’ This kind of behavior, 
extremely sensitive to the specific distributional details of the input data, does not seem compatible 
with the robust character of child language acquisition. 

 
• The claim of broad coverage and robust generalization, as opposed to the (supposedly) more narrow 

linguistically-based treatments also seems suspect.  Many common systematic regularities that have 
syntactic reflexes, such as the verb alternation classes extensively discussed by Levin (1993) are not 
and probably cannot be ‘discovered’ by the current methodology.  To take but one example from 
Levin out of many, “bounce” is a member of the causative/inchoative class.  According to Levin, 
this class  admits  “Jane bounced the ball'' but bars “Jane bounced at the ball.”  However, current 
systems assign the second, unacceptable sentence a higher probability score than the first.  The same 
is true for middle constructions. Since these examples cause no seeming difficulty for human 
speakers, again there seems to be a large gap between the generalizations the systems can make and 
what people do. 

 
• More generally and importantly, the reason for such failings as  the one above seems to be that, 

contrary to the terminology often highlighted in conjunction with such systems, they are not, in fact 
“exicalized.”  Here we take the term “lexicalized” to mean that the information in the lexicon, viz., 
subcategorization, selectional information, and the like, is taken as primary, with phrase structure 
rules consequently being informationally redundant, as suggested since the late 1960s and as adopted 
by many current linguistic approaches.  When examined closely, the statistical systems in fact cannot 
weight properly the particular, detailed lexical properties of ‘bounce’ vs. other verbs.  Rather, they 
focus on the presence or absence a particular syntactic configuration, e.g., V-PPs, to the exclusion of 
other information. Given this fundamental limitation they cannot discriminate among lexically-
grounded alternation classes. 

 
• As has been pointed out by others, the PTB is both too large and too small for adequate 

generalization to mirror that of children or  adults. On the one hand, the PTB has enormous 
redundancy, since it is based on 49,208 sentences from a syntactically repetitive source: Wall Street 
Journal articles. The resulting sparseness means that the that the training corpus does not even begin 
to cover the syntactic richness of English. Therefore, smoothing becomes critical and determines 
much of the resulting systems' behavior; some of the mismatches between system and human 
judgments are not artifacts of data, but artifacts of smoothing the data.  Since the ‘covering density’ 
of examples is not adequate to span the space of English possibilities, constructions that are readily 
parsed by people without prior exposure are completely misparsed by such systems. The result again 
is that generalization is poor, not robust. One classic example are parasitic gap constructions, though 
there are many others. For example, in nearly-minimal  pairs such as “Everyone that John knows 
Mary likes/Everyone that John knows likes Mary,” such systems incorrectly parse the first example 
with “Mary” as the object of “likes” (rather than the subject of the main clause).  On the other hand, 
the large size of the PTB, due to its repetitive syntactic constructions, means that in many cases 
patterns like V-NP-PP often dominate lexical details, as noted above. 

 
• Such statistical systems easily learn unnatural languages just as readily and with just as much 

accuracy as natural languages.  They easily learn languages with syntactically bizarre forms, and 
withjust as high precision and recall.  For example, no known human language alternates its verbs as 
head-first in some clauses, and head-final in others, randomized in a 50-50 fashion. Yet the statistical 
systems trained on such non-natural languages learn and test just as well on this unnatural input. 
Similarly, interchanging arguments and adjuncts so that adjuncts are next to verbs, and arguments 
distant, contrary to natural language syntax, is just as “natural’ for these systems – just as easily 
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learned and as accurately parsed. Combining this unnatural argument-adjunct reversal with 
randomized head-first/head-final patterns is also just as easily learned and parsed.  Indeed, we have 
yet to find a pattern, however unnatural, that these systems cannot readily learn and parse.  While for 
some this might be taken as a sign of engineering ‘flexibility,’ this behavior seems at odds with the 
restrictions found in human acquisition, which does not display such lability (see N. Smith 1988 and 
A. Moro 2007 among others for human experiments and fMRI studies confirming these restrictions). 
The bottom line is that the statistically-based inference systems appear to be driven by the vagaries 
of the distributional pattern  of external data to an degree not attested by human language 
acquisition, similar to the findings of Yang (2002). 

 
• The probability scores these systems assign to sentences after parsing often meant to reflect 

‘likelihood’ as something akin to ‘grammaticality’ but often these values do not square with natural 
grammaticality judgments.  Thus the simple equating of ‘likelihood’ with ‘grammaticality,’ often 
explicit or implicit in much of this work,  does not in our view  appear to hold. Some examples have 
already been given above, but there are a host of others. For example, the nearly minimal 
grammatical/ungrammatical pairs with radical case assignment violations, such as “I am proud of 
John/I am proud John” are assigned identical probability scores, even despite the general 
probabilistic penalty assigned to longer sentences (here the grammatical one) over shorter ones (here 
the ungrammatical one).  

 
Semantic Heads for Grammar Induction 

 
Andrew M. Olney 

Institute for Intelligent Systems 
University  of  Memphis 

Abstract 
 
     Olney (2007) presents an unsupervised grammar induction model that uses semantic similarity to induce 
syntactic structure.  A key element of this model is the operational definition of syntactic heads as being 
semantically substitutable for their phrases.  This paper describes the history of this operational definition for 
heads and tests its validity with respect to four computational implementations.  The paper concludes with 
implications for these results on the operational definition of heads proposed by theoretical linguists as well 
as the model presented by Olney (2007). 
 
1       Introduction 
 
Previous work on unsupervised grammar induction [1 , 3 , 11 ] has made use of the distributional hypothesis 
[9 ], which characterizes words by their contexts.  Under the distributional hypothesis, a phrase that occurs in 
the same environments as a single word, i.e.  has a similar distribution, is likely to be have the same syntactic 
function as the single word.  Hierarchical descriptions of sentences can then be built by attaching such 
phrases to a higher level node (represented by the single substituting word) until only a single root node 
remains [1 ]. 
     Olney (2007) recently proposed a semantically-oriented model based on the distributional hypothesis.  
This model is distinguished from previous models in that it does not make use of part of speech tags or 
nonterminal nodes, yet it still manages to significantly outperform a  right  branching  baseline.   A  key  
element  of  this  model  is  the  operational  definition  of syntactic heads as being semantically substitutable 
for their dependents, as discussed in the theoretical linguistics literature [17 , 10 , 4]. This paper explores 
using semantic substitutability to determine syntactic heads and presents perhaps the first computational 
evaluation of this notion. 
 
2       Semantic  Heads 
 
Heads are theoretically-motivated linguistic elements with a primary role in syntactic description.  In X-bar 
theory, a phrase contains a single head which determines the syntactic type of the phrase [2 ].  In dependency 
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grammars, heads have a similar role, except that syntactic relations exists solely between words [16 ].  The 
importance of heads across these theories suggests that the proper identification of heads is of central 
importance to a language learner. 
     Despite the wide use of heads and head-like notions in syntactic theory, there has been much debate as to 
precisely what a head is [17 , 10 , 4 ].  However, some agreement exists on a loose semantic definition of 
head: X is a head of X+Y if X describes a kind of  thing described by X+Y [17 , 10 , 4 ].  Beyond this initial 
agreement, differences emerge.  Zwicky (1985) equates a  kind  of  with  semantic  arguments.   He  argues  
that  "green  car"  describes  a  kind  of  car, rather  than  a  kind  of  green.   This  example  is  endocentric,  
since  the  head,  "car"  appears within the phrase "green car." Hudson (1987) makes the opposite claim, that a 
kind of  refers to semantic functors,  e.g.  "on the desk" refers to a kind of location rather than a kind of desk.  
This example is exocentric, since the meaning "location" is not directly attributable to any particular word in 
"on the desk," but to the phrase as a whole.  Croft (1996) unites these two perspectives by noting that 
semantic functors are heads for government relationships and semantic arguments are heads for modification 
relationships. 
     Given  the  theoretical  importance  a  kind  of  has  in  identifying  heads,  it  is  worthwhile exploring 
machine learning methods that can acquire this kind of knowledge.  In particular, Latent Semantic Analysis 
(LSA) is a vector space method capable of measuring the similarity between words and collections of words 
[5 , 6 , 12 ].  LSA has been shown to closely approximate vocabulary acquisition in children [12 ], grade 
essays as reliably as experts in English composition [7 ], and understand student contributions in tutorial 
dialogue [8 , 14 ].  These results are particularly  impressive  considering  that  LSA  creates  its  knowledge  
representation  without human intervention. 
 
3       Methodology 
 
We present four methods for identifying heads using LSA. The basic methodology is to create an LSA space 
and to compare the semantic similarity of a dependency pair's elements to the whole.  For example,  "green" 
and "car" would both be compared with "green car." Using the Penn Treebank [13 ], heads found using these 
four methods are compared with manually identified heads. 
     The four methods presented use this basic methodology along the dimensions +/- order and  +/-  
endocentric.   The  ordered  methods  use  unigrams  and  bigrams  as  basic  elements, inherently  preserving  
word  order.   The  minus  endocentric,  or  exocentric,  methods do not compare  a  dependency  element  to  
the  whole,  but  rather  to  the  nearest  unigram  neighbor of the whole.  For example "in bed" may have a 
nearest unigram neighbor, "sleepy," which is  more  similar  to  "bed"  than  to  "in."  Furthermore,  the  
construction  of  the  LSA  spaces varied in terms of local and global context.  Global context represents the 
traditional LSA calculation, in which cellij denotes the number of times termi appeared in documentj.  In local 
context, cellij is the number of times termj  occurred before the target termi, and the value of celli(j+n)  is the 
number of times termj  occurred after the target termi, where n is the number of terms in the corpus.  Both 
local and global spaces were constructed using both unigrams and bigrams as terms to preserve word order. 
 

 
 
4       Results  &  Discussion 
 
Results in Table 1 show that only the ordered methods were significantly better than chance, and that  
unordered  methods  were  significantly  worse  (p = .05).  There was no  significant difference between 
endocentric and exocentric methods (p = .05).  These results suggest that LSA is capturing "a kind of "-like 
information on a more abstract level than endocentric and exocentric, which would make LSA similarity 
closer to the loose semantic definition of head described in the literature [17 , 10 , 4 ].  However, the low 
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overall discriminability of LSA, 57% in the best case, further suggests that semantic similarity is not the only 
factor in determining headhood.  It appears likely that there is another element to determining headness that is 
missing from the discussion amongst theoretical linguists. 
     These  results  have  similar  significance  to  the  model  proposed  by  Olney  (2007).   It is somewhat 
surprising that this model can outperform a right branching baseline even though the  method  of  determining  
headhood  has  a  weak  discriminability  of  57%.   It seems likely therefore that an improvement in the 
ability to determine heads will be a major source of improvement in this model. 
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Computational models of bilingual language processing are in the early stages of 
investigating various issues such as degree of language independence, cross linguistic 
positive transfer and interference, contexts of acquisition, and modality (speaking, writing, 
comprehension) specificity (Thomas & van Heuven, 2005). Models of adult bilingual word 
recognition (Dijkstra & Van Heuven, 1998) and speech perception (Lewy & Grosjean, 
1997) have been developed. In addition, Thomas, (1997) developed the BSN model which 
is a developmental distributed model of word recognition that includes mapping of 
orthography and semantics with a language context layer.  
 
The model presented here simulates and compares the bilingual and monolingual reading 
development of native Spanish speakers learning English as a second language (L2). By 
varying the training contexts we explore differences in English reading outcomes. Contexts 
differed by: sequence of training, degree of English (L2) word learning training, and 
whether or not the model is trained in Spanish (L1) word reading before English word 
reading. Simulations 1 and 2 model simultaneous bilingualism. Simulations 3 and 4 model 
sequential bilingualism with complete L2 word learning training, and simulations 5 and 6 
model sequential bilingualism with partial L2 word learning training.  
 
The architecture consists of a phonology layer, an orthography layer and a semantics layers 
with hidden layers connecting all layers. The design assumes the two languages are stored 
in a single common representational resource and become distinguishable through 
language-specific information. Language separation is seen as emerging in the process of 
learning respective regularities in Spanish and English input. The input was created from 
Spanish and English phonemes accounting for phonotactic regularities and the degree of 
overlap between the two languages. Multisyllabic words were used which enabled the 
modeling of differences in word length and stress patterns of English and Spanish. Fifty 
items in each language were constructed using both vowel and stress centering. 
 
Results for the simultaneous bilingual model suggest intramodality facilitation effects, as it 
did not take twice as long for the model to reach criteria in bilingual word reading as it did 
to reach criteria for English word reading only. Comparisons of simulations 3 and 4 to 
simulations 5 and 6 also showed positive transfer of Spanish reading to English reading 
even when levels of English word learning varied. Models receiving initial word reading 
training in Spanish reached English word reading criteria in half the number of training 
epochs regardless of whether English word learning was partial or reached criteria.  
 
To our best knowledge, our model is the first developmental computational model of 
bilingual word reading that incorporates phonology, orthography and semantics without the 
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use of a language context layer. In addition, by first training the distributed network on 
word learning (phonology to semantics) and subsequently on word reading (orthography to 
phonology) we take the modeling of development one step further. The intent was to more 
realistically model the relationship between oral language skills and reading development. 
Consideration was also given to real-world situations in which English language learners 
find themselves in current educational contexts.  
 

 
Figure 1: Comparison of Learning Rate  
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We developed an algorithm to model the learning of three verb classes: raising verbs (e.g., 
seem), control verbs (try) and ambiguous verbs that can be used as either (begin) (1a-c). 
These classes of verbs present an interesting learning problem because they are all used 
with to+infinitive complements, yet raising and control verbs have distinct syntactic and 
semantic properties. Any algorithm that attempts to classify an unknown verb by initially 
assuming the most restricted class (control) and passing to less restricted classes on the 
basis of positive evidence (such as use with an expletive subject) cannot distinguish 
ambiguous verbs from raising verbs. Thus, we developed an algorithm that uses semantic 
cues in the input. 
 Previous research (Becker, 2005) pointed to the usefulness of two cues found in 
sentences containing these verbs: animacy of the sentence subject, and eventivity of the 
predicate embedded under the main verb (2). Animate subjects are compatible with both 
raising and control main verbs (though they occur predominantly with control verbs) (2a), 
but inanimate subjects are compatible only with raising verbs (2b). Embedded stative 
predicates more commonly occur with raising main verbs (2c), while eventive predicates 
tend to occur with control main verbs (2d). However, to classify a verb, it is insufficient to 
only use the proportions at which a verb occurs in each of the four possible semantic 
frames (animate or inanimate subject plus eventive or stative predicate): Many raising 
verbs (e.g., gonna) occur with animate subjects so often that the crucially informative uses 
with inanimate subjects are relatively rare, particularly in child-directed speech. 
 We developed a learning algorithm that maintains numbers representing the verb's 
preference or aversion to each semantic frame. It automatically discards example sentences 
that merely reinforce its existing knowledge. This property, which was inspired by linear 
reward-penalty learning with batch (Yang, 2002), enables it to correctly classify raising 
verbs like gonna that occur frequently with animate subjects. After receiving all input 
sentences, the algorithm settles to one of twenty rest states. To test the algorithm, we 
counted the number of occurrences of a few common raising, control and ambiguous verbs 
with each of the four semantic frames in both the CHILDES database (child-directed 
speech; MacWhinney 2000) and an annotated version of the Switchboard corpus (adult-
directed speech; Taylor et al., 2003, Bresnan et al., 2002). See Tables 1-2. We synthesized 
input sentences for each verb according to these proportions and fed them to the algorithm. 
The final states of many runs yield distinct patterns for the three verb classes. In addition, 
when learning a control verb, each run of the algorithm begins in a neutral state 
characteristic of raising verbs and drifts toward a state characteristic of control verbs.  This 
effect is harmonious with child grammaticality judgments that vary with age (Becker, 
2006): Younger children (age 3) are more likely to accept control verbs where only a 
raising verb is appropriate, and learn not to make this mistake over several years (by age 5). 
 
(1) a.  John seems to be clever. 
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 b.  John tried to win the race. 
 c.  It began to rain. (raising) 
 c.’ John began to write a novel. (control) 
 
(2) a.  Amy seems/tried to be a good waitress. (animate subject) 
 b.  The truck seemed/*tried to roll down the hill. (inanimate subject) 
 c.  Gordon seemed to be leaving/?leave. (raising verb with stative/?eventive pred) 
 d.  Gordon tried to ?be leaving/leave. (control verb with ?stative/eventive pred) 
 

Table 1. Numbers of Verb Classes with Animate/Inanimate Subject and Eventive/Stative Predicate, CHILDES 
Verb subclass Animate+Eventive Animate+Stative Inanimate+Eventive Inanimate+Stative 
Raising 1097 149 37 35 
Control 604 110 2 0 
Ambiguous 40 4 0 4 
 

Table 2. Numbers of Verb Classes with Animate/Inanimate Subject and Eventive/Stative Predicate, Switchboard 
Verb subclass Animate+Eventive Animate+Stative Inanimate+Eventive Inanimate+stative 
Raising 273 241 40 127 
Control 716 175 4 0 
Ambiguous 673 173 18 32 
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Selective Attention and Darwinised Data-Oriented Parsing


Darwinised Data-Oriented Parsing (DDOP) is a new approach to unsupervised Data-
Oriented Parsing (Bod 2006) which makes use of a hitherto unrecognised feature of Data-
Oriented Parsing (DOP; Scha 1990, Bod 1992, 1998). Previous DOP algorithms have
been static in character; they have been given their training data as a whole corpus which
then remains static as the parser is run over it’s training data. However, if it is run
incrementally, feeding all new parses back into the training data for future reuse, it may
be run as a Genetic Algorithm. DOP analyses novel strings by directly exploiting the
statistical properties of a corpus of trees without producing any abstract representations of
these regularities; it constructs novel parses by extracting any-depth tree-fragments from
the training corpus, which are used to construct a Monte-Carlo sample of random
derivations of parses; the output is the most frequent parse in the sample, taken as an
approximation to the most probable parse. In an incremental DOP algorithm, subtrees are
replicators; every time a novel input is parsed, the output parse will contain new copies of
all the extracted subtrees used in the construction of it’s derivations, which are then
added to the training data for subsequent parses. Since more highly generalisable subtrees
will be used and replicated more often, subtrees are subject to a selection pressure
towards greater generalisability. DDOP exploits this by starting with an empty training
corpus, and backing off to the use of randomly generated subtrees whenever a suitable
subtree cannot be found in the training data.

However, true random subtree generation (i.e. sampling from the set of all subtrees of all
possible trees over a given string) is computationally costly; the number of possible
subtrees over a string of length n rises approximately exponentially with n. Furthermore,
it is well documented that humans in fact find it difficult to produce true random
behaviour, and attempts to do so will tend to be skewed by memory. Therefore, in this
paper, we report on a number of tests with DDOP comparing training runs where the
parser is set to simply ignore input strings over a certain length k until it has built up its
training data, to runs where the parser if forced to parse all inputs of any length
throughout the run. This is to test the hypothesis that DDOP training converges on highly
generalisable tree-structures faster when it ignores longer stimuli in the early stages.
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Acquisit io n o f synt a ct ic ca t eg o r ies is a n imp o r t a nt st ep in childr en’s ea r ly la ng ua g e de-
velopment. Recently, Mintz (2003) proposed that children may begin to acquire categories
by attending to words that occur within frequent frames — pairs of words that occur fre-
quent ly wit h a sing le int er vening wo r d. In t his wo r k, we a na lyze t he kinds o f wo r ds t ha t a r e
categorized by the frequent frames approach, and compare the results of this approach to
two other models of syntactic category learning: the hierarchical clustering model of Red-
ington et al. (1998) and the Bayesian model of Goldwater and Griffiths (2007). We provide
each model with the same input corpus of child-directed speech and examine the resulting
categorizations. Our analysis reveals several interesting facts. First, we show that all three
models achieve similar high categorization accuracy when scored only on the words that occur
within frequent frames. This suggests that under a variety of distributional categorization
approaches, words that occur within frequent frames are indeed more easily categorized than
other words. However, only a small percentage of words occur within frequent frames, and
these words are overwhelmingly verbs and pronouns. In contrast, the clustering model and
Bayesian model assign categories to nearly all word tokens, and are able to correctly cluster
many nouns and other parts of speech as well as verbs and pronouns. The clustering model
performs slightly better than the Bayesian model when evaluated on the full corpus, and we
attribute this difference to the two models’ treatment of syntactic ambiguity: the clustering
model makes a simplifying assumption that every word type belongs to only one syntactic
category, while the Bayesian model assigns categories on a token-by-token basis. We find
that the Bayesian model overestimates the level of syntactic ambiguity in the corpus, which
is actually quite low. Although the ability to learn syntactic ambiguity is surely necessary in
the long run, our results suggest that strong constraints favoring unambiguous categorization
are helpful in early acquisition.
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It is a age-old observation that the sentences of human languages exhibit hierarchical organization,
and that this organization is implicated in the mapping being sentence types. Thus, passives are
related to actives through the displacement of noun phrase constituents (among other things), and
interrogatives are related to declaratives through the fronting of an auxiliary verb that follows the
noun phrase subject constituent.  How and why do language learners derive structural generalizations
about the patterns of their languages?  Chomsky’s (1975) Argument from the Poverty of the Stimulus
(APS) starts from the premise that the relevant data to distinguish between structural and linear
generalizations are absent from the learner’s input.  As a result, the only explanation for the structural
basis of language must come from an innate learning bias, which Chomsky argues takes the form of a
template for grammatical rules.  Though the precise nature of the innate bias has evolved as linguistic
theory has developed, the idea that there is a language-specific bias for hierarchical representations
has remained constant.

The APS has recently come under fire.  On the one hand, Pullum and Scholz (2002) have
disputed the degree to which the stimulus is actually impoverished, finding examples of . Yet it
remains an open question whether the infrequent presence of examples like (1), which distinguish a
structure sensitive generalization for question formation (i.e., front the main auxiliary verb) from a
linear sensitive generalization (i.e., front the first auxiliary verb), is sufficient to drive successful
learning (Legate and Yang, 2002).

(1) Is the bird that is singing lonely?

Lewis and Elman (2001) stage a more direct assault on the APS, arguing that even in the absence of
examples like (1), learners without any innate grammatical bias can nonetheless induce a structure
sensitive generalization for question formation. Specifically, they trained a Simple Recurrent Network
(SRN) to perform the task of word prediction on a variety of declarative and interrogative sentence
types, withholding examples of the form in (1). In prior work, Elman (1991) had shown that SRNs
exhibit sensitivity during the word prediction task to the non-local dependencies involved in subject-
verb agreement, and on that basis he argued that they induce a hierarchical representation of the
sentence.  Lewis and Elman demonstrate that the network they trained generalizes in an apparently
structure sensitive fashion when tested on cases like (1): at the relative pronoun that, the network
predicts the occurrence of an auxiliary verb, and at the end of the relative clause it fails to predict an
auxiliary.

There are a number of reasons for skepticism, however.  First of all, there is little reason to
believe that Lewis and Elman's network represents the relationship between the declarative and
interrogative forms of a sentence (or alternatively between the fronted and canonical positions of the
auxiliary verb) as such knowledge is unnecessary for the prediction task. Yet the question of structure
sensitivity arises only in the context of this relation. As a result this simulation simply doesn't bear on
whether an innate structure sensitive bias is necessary. Secondly, as Reali and Christiansen (2005)
show, the distinction between the grammatical (1) and its non-structure sensitive counterpart (2) can
be predicted using a bigram language model.

(2) Is the bird that singing is lonely?

However, as Kam et al. (2005) demonstrate, as soon as one expands the empirical domain slightly,
bigram statistics are no longer sufficient to distinguish between the structure sensitive and linear
sensitive patterns. It is therefore possible that Lewis and Elman's network is achieving its success
through simple means, which will not generalize beyond their original experiment.
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To approach the question of structure dependence more directly, we moved away from the
task of word prediction and focused instead the ability of a neural network to induce the kind of
grammatical mappings that were the basis of Chomsky’s original argument, namely structure-
dependent transformations.  There have been a number of previous attempts to get networks to learn
structure sensitive mappings (Chalmers, 1990; Niklasson and van Gelder, 1994; Neumann 2002).
However all of these works share the assumption that the network is presented with a representation
that in some manner encodes the hierarchical structure of the input. Given such an input, it is the
task of the network to learn a mapping between this representation of hierarchical structure and
another. Yet the situation of language learning does not present a learner with hierarchical syntactic
structure.  Leaving aside the possible role of prosodic information, any hierarchical structure that is
necessary to account for syntactic regularities must be imposed by the learner. Since SRNs have been
touted as an instance of a system that can induce hierarchical structure from sequential input, we
aimed to investigate their effectiveness in learning to transform sentences from one grammatical form
to another.

Although past studies of SRNs have made great use of their ability to accept temporally
ordered input, allowing them to take unboundedly long sentences as input, that work has not
addressed the question of unbounded outputs of the sort that must be allowed as possible outputs of a
grammatical transformation. Botvinick and Plaut (2006) provide a simple and elegant way to do this in
their studies of short-term memory for serial order.  Botvinick and Plaut demonstrated that when
given a sequence of letters as input, an SRN can be trained, upon the presentation of a recall cue, to
output the input sequence one element at a time. In order to assess the limits of this ability, we
presented an SRN with a somewhat more complex task: instead of a single recall cue that triggered
the identical sequence as output, we introduced an additional cue whose target output was a
transformation of the original sequence. In the simulation, the input sequences (of which there were
72,000) were drawn from a set of four symbols {a, b, c, d}, and varied in length from 1 to 8, in equal
numbers. Training consisted of the presentation of one of these sequences one symbol at a time, with
no target output, followed the presentation of one of two recall cues (IDENT or TRANS) for a single
time step, which triggered the target output sequence that was either the identity or reversal of the
original. This is depicted in Figure 1. The input and output layers of the network contained 6 units,
and the output contained 5 units, and these were used for localist representations of the input and
output symbols.  The hidden and context layers contained 100 hidden units. All units but the outputs
used sigmoid activation functions, while the outputs used a soft-max activation function, so that
activation was interpretable as the network’s assessment of the probability of a particular unit as
output. This network was trained for 120,000 weight updates with the Backpropogation Through
Time algorithm, using a cross-entropy error function, a batch size of 50 examples, and initial random
weights in the range [-.1,+.1]. As seen in Figure 2, this network is extraordinarily successful when
tested on novel sequences. An output sequence was judged as correct only if each of the targets was
the most active output unit at the appropriate time step.

Figure 1: Training regimen for reversal network

Figure 2: Accuracy of reversal network on novel sequences
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Impressive as it is, the network’s success at performing the reversal task does not guarantee success in
a grammatical transformation task. As a transformation, reversal does not require sensitivity to any
sort of structure in the sequence.  We therefore attempted to train an SRN to perform a grammatical
transformation on an input sentence, specifically the mapping from declarative to interrogative
sentences. Following the design in Lewis and Elman (2001), we trained the network using simple
sentences with both transitive and intransitive verbs, with and without auxiliary verbs, subject-verb
agreement, and recursive modification of noun phrases by prepositional phrases and relative clauses.
All inputs to the network were declarative sentences, while the target output sequence either
consisted of the identical declarative (when triggered by a DECL cue) or an analogous interrogative
(when triggered by a QUEST cue). Because the vocabulary of the network was larger, the number of
input and output units was increased to 34 to allow for localist representations of the entire
vocabulary. The number of hidden and context units remained at 100. The training data consisted of
100,000 stochastically generated sentence inputs (average length of 5.54 words, ≈15% including a
prepositional phrase modifier, ≈8% with a relative clause modifier), with half of these were followed by
a DECL cue, and the other half followed by a QUEST cue, with the appropriate declarative or
interrogative sentence as the target output sequence after this point. In order to replicate Lewis and
Elman’s scenario, we withheld from training one class of training examples: those with a relative-
clause-modified subject and a QUEST recall cue. This meant that although the network was exposed to
sequences in the input with subjects modified by relative clauses, it was instructed on how to form
questions from them.  If the network had represented its knowledge of the question transformation
in a structure sensitive fashion, so that it encoded a generalization about all kinds of noun phases in
subject position, we should expect to find generalization to this held-out example type. In contrast, if
the network has represented the question transformation as a mapping between linear sequences of

Figure 4: Network output for interrogatives

Figure 3: Network output for declaratives
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words, the absence of such a pairing in the training data would prevent the network from generalizing
to the novel example type.

 For the sentence types on which the network was trained, its performance was highly
accurate, with the only errors being the substitution of one word by another within the same
grammatical class.  Examples of the network’s outputs as compared to the target outputs for a
declarative and interrogative output sentence is shown in Figures 3 and 4 (along the horizontal axis are
the target words, vertical bars represent activation of lexical outputs). In contrast, the network was
unsuccessful for its interrogative outputs for sentences of the type on which training was withheld.
Indeed, the sequence of words output by the network never matched the target, even abstracting
away from errors with word class.  An example output is shown in Figure 5. Instead, the network’s
outputs almost always corresponded to output sequences of a type on which the network was trained.
These erroneous outputs were not however random. Typically, though not always, they were well-
formed questions of some sort, and they generally preserved one of two properties of the input
sequence (or both):subsequences of lexical items from the input, or sentence length (the example in
Figure 5 preserves the former property).   We re-ran this simulation under a variety of conditions,
changing the number of hidden units, batch size, learning rate, and vocabulary size, with the same
qualitative result emerging in all cases.

The inability of the network to produce a question of the appropriate structure suggests that
the network has not induced an abstract structural generalization about question formation that cuts
across different instances of noun phrases in subject position.  However, the fact that the network
does not produce an output that is interpretable as the output of any coherent structural or linear
transformation makes it difficult to determine just what sort of knowledge the network has acquired.
Indeed, we suspect that the network induces some sort of “output grammar” on the basis of the
sequences that it has been trained to output, and this grammar constrains the possible network
outputs, even if the network’s internal representation could be taken, in some sense, to represent the
correct output of the transformation.  We are investigating this possibility in ongoing work by
considering whether other training regimens might allow the network to produce such output forms.

In spite of the possible presence of an output grammar, there is one way in which we might
be able to diagnose the structure sensitivity of the network’s knowledge.  Consider, for instance, a
sentence like the following:

(3) A boy who can love some lizards must cough.

We already know that our network will fail to produce an interrogative corresponding to this
sentence.  At the very first word of the output, however, the network will need to produce an auxiliary
verb of some sort. If the network’s transformation of (3) into a question is structurally-based, we
should expect to find that the first word in its output will be must.  In contrast, if the generalization is
linearly-based, the first output will be can.  A third possibility is that the network has learned a default

Figure 5: Network output for withheld interrogative
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of sorts, so that its output does not depend on the lexical content of the auxiliaries in the input. We
can therefore find out something about the structure dependence of the network’s behavior by
observing the activation of this first word.1 To test which of these possibilities characterized the
network’s behavior, we tested the network on a set of 161 sentences, all containing relative-clause-
modified subjects, in which the bearer of verbal inflection in the main and relative clauses
systematically varied among two modal verbs (can and must) and the main verb. We found that the
mean activation of the correct auxiliary verb at the point immediately following the recall cue was .45.
Average activation however varied by the target auxiliary: as illustrated in the left graph in Figure 6,
the network’s average activation when the target was can was virtually 0, while it was much higher for
the other two possibilities. The right graph shows that the network’s success in producing the correct
auxiliary also varied depending upon the identity of the auxiliary in the relative clause modifying the
subject (the linearly first auxiliary): when there was no auxiliary within the relative clause, indicated by
the label NULL in the graph, as in a sentence like a boy who loves some lizards can cough, the network
was quite unlikely to produce the correct auxiliary to start the question, but when the relative clause
contained one of the modal verbs, the network was much more likely to correctly produce the  correct
auxiliary. Subsequent replications of this simulation, with different initial random weights, yielded
qualitatively similar results.

The network’s success in correctly producing the auxiliary verbs does and must does point to
some sort of structural dependence in its knowledge of question formation.  However, the network
seems unable to put aside irrelevant non-structural factors, such as the identity of the auxiliary in the
relative clause, in the formulation of its generalization concerning question formation. Concerning the
first of these, it is possible that it is an accurate reflection of the path of child language acquisition.
Santelman et al. (2002) inter alia have found that children vary in their success in producing correctly
inverted questions depending upon the identity of the auxiliary verb, though they found worse
performance with do than with modals.  We leave for future work the question of whether this
pattern might arise in a training set with more realistic distributions among the types of auxiliaries.
Concerning the sensitivity to the linearly first auxiliary, we are unaware of evidence that children or
adults show a similar pattern.  We note, however, that we have found a similar inability of SRNs to
attend to linearly-based generalizations in on-going work on the induction of anaphora. Contrary to
what is sometimes assumed, then, the difficulty SRNs have in inducing grammatical generalizations
does not reside in identifying structurally-based generalizations, but rather in ignoring linearly-based
ones. Since it was precisely the ability to put aside such non-structural generalizations that was at the
crux of Chomsky’s APS, we contend that the argument still stands.
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