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Abstract 

Unsupervised learning of grammar is a 
problem that can be important in many 
areas ranging from text preprocessing 
for information retrieval and 
classification to machine translation. 
We describe an MDL based grammar 
of a language that contains morphology 
and lexical categories. We use an 
unsupervised learner of morphology to 
bootstrap the acquisition of lexical 
categories and use these two learning 
processes iteratively to help and 
constrain each other. To be able to do 
so, we need to make our existing 
morphological analysis less fine 
grained. We present an algorithm for 
collapsing morphological classes 
(signatures) by using syntactic context. 
Our experiments demonstrate that this 
collapse preserves the relation between 
morphology and lexical categories 
within new signatures, and thereby 
minimizes the description length of the 
model. 

1 Introduction 

Our long term goal is the development of 
methods which will allow one to produce 
optimal analyses from arbitrary natural language 
corpora, where by optimization we understand 
an MDL (minimum description length; 

Rissanen, 1989) interpretation of the term: an 
optimal analysis is one which finds a grammar 
which simultaneously minimizes grammar 
length and data compression length. Our specific 
and primary focus is on morphology, and on 
how knowledge of morphology can be a useful 
step towards a more complete knowledge of a 
language’s linguistic structure. 

Our strategy is based on the following 
observation: knowing the rightmost suffix of a 
word is very useful information in inferring (or 
guessing) a word’s part of speech (POS), but due 
to the ambiguity of many suffixes, it is even 
better to know both a word’s suffix and the 
range of other suffixes that the word’s stem 
appears with elsewhere, i.e., its signature. As we 
will see below, this conjunction of “better” 
information is what we call the signature 
transform, and in this paper, we explore how 
knowledge of signature transform can be merged 
with knowledge of the context vector to draw 
conclusions about morphology and syntax.  

In the distant future, we would like to be able 
to use the signature transform in a general 
process of grammar induction, but that day is 
not here; we therefore test our experiments by 
seeing how well we are able to predict POS as 
assigned by an available tagger (TreeTagger; 
Schmid 1994). In particular, we wish to decrease 
the uncertainty of a word’s POS through the 
morphological analysis described here. This 
decrease of uncertainty will enter into our 
calculation through an increase in the 
probability assigned to our test corpus once the 
corpus has been augmented with TreeTagger 
assigned POS tags. But to be clear on our 



process: we analyze a completely raw text 
morphologically, and use the POS tags from 
TreeTagger only to evaluate the signature 
transforms that we generate. 

We assume without argument here that any 
adequate natural language grammar will contain 
a lexicon which includes both lexical stems 
which are specified for morphological 
properties, such as the specific affixes with 
which they may occur, and affixes associated 
with lexical categories. We also explicitly note 
that many affixes are homophonous: they are 
pronounced (or written) identically, but have 
different morphological or syntactic 
characteristics, such as the English plural –s and 
the verbal 3rd person singular present –s. 

We focus initially on unsupervised learning 
of morphology for three reasons: first, because 
we already have a quite successful unsupervised 
morphological learner; second, the final suffix of 
a word is typically the strongest single indicator 
of its syntactic category; and third, analysis of a 
word into a stem T plus suffix F allows us 
(given our knowledge that the suffix F is a 
stronger indicator of category than the stem T) 
to collapse many distinct stems into a single 
cover symbol for purposes of analysis, 
simplifying our task, as we shall see.1 We 
eschew the use of linguistic resources with hand-
(i.e., human-)assigned morphological infor-
mation in order for this work to contribute, 
eventually, to a better theoretical understanding 
of human language acquisition. 

We present in this paper an algorithm that 
modifies the output of the morphology analyzer 
by combining redundant signatures. Since we 
ultimately want to use signatures and signature 
transforms to learn syntactic categories, we 
developed an algorithm that uses the syntactic 
contextual information. We evaluate the changes 
to the morphological analysis from the 
standpoint of efficient and adequate 
representation of lexical categories. This paper 
presents a test conducted on English, and thus 
can only be considered a preliminary step in the 
                                                           
1 See Higgins 2002 for a study similar in some ways; 
Higgins uses morphology as a bootstrap heuristic in one 
experimental set-up. This paper is heavily indebted to prior 
work on unsupervised learning of position categories such 
as Brown et al 1992, Schütze 1997, Higgins 2002, and 
others cited there.  

eventually development of a language-
independent tool for grammar induction based 
on morphology. Nonetheless, the concepts that 
motivate the process are language-independent, 
and we are optimistic that similar results would 
be found in tests based on texts from other 
languages.  

In section 2 we discuss the notion of 
signature and signature transform, and section 3 
present a more explicit formulation of the 
general problem. In section 4 we present our 
algorithm for signature collapse. Section 5 
describes the experiments we ran to test the 
signature collapsing algorithm, and section 6 
presents and discusses our results. 

2 Signatures and signature transforms 

We employ the unsupervised learning of 
morphology developed by Goldsmith 
(Goldsmith, 2001). Regrettably, some of the 
discussion below depends rather heavily on 
material presented there, but we attempt to 
summarize the major points here. 

Two critical terms that we employ in this 
analysis are signature and signature transform. 
A signature found in a given corpus is a pair of 
lists: a stem-list and a suffix-list (or in the 
appropriate context, a prefix-list). By definition 
of signature σ, the concatenation of every stem 
in the stem-list of σ with every suffix in the 
suffix-list of σ is found in the corpus, and a 
morphological analysis of a corpus can be 
viewed as a set of signatures that uniquely 
analyze each word in the corpus. For example, a 
corpus of English that includes the words jump, 
jumps, jumped, jumping, walk, walks, walked, 
and walking might include the signature σ1 
whose stem list is { jump, walk } and whose 
suffix list is { Ø, ed, ing , s }. For convenience, 
we label a signature with the concatenation of its 
suffixes separated by period ‘.’. On such an 
analysis, the word jump is analyzed as belonging 
to the signature Ø.ed.ing.s, and it bears the 
suffix Ø. We say, then, that the signature 
transform of jump is Ø.ed.ing.s_ Ø, just as the 
signature transform of jumping is 
Ø.ed.ing.s_ing; in general, the signature 
transform of a word W, when W is morpho-
logically analyzed as stem T followed by suffix 
F, associated with signature σ, is defined as σ_F. 



In many of the experiments described below, 
we use a corpus in which all words whose 
frequency rank is greater than 200 have been 
replaced by their signature transforms. This 
move is motivated by the observation that high 
frequency words in natural languages tend to 
have syntactic distributions poorly predictable 
by any feature other than their specific identity, 
whereas the distribution properties of lower 
frequency words (which we take to be words 
whose frequency rank is 200 or below) are better 
predicted by category membership.  

In many cases, there is a natural connection 
between a signature transform and a lexical 
category. Our ultimate goal is to exploit this in 
the larger context of grammar induction. For 
example, consider the signature Ø.er.ly, which 
occurs with stems such as strong and weak; in 
fact, words whose signature transform is 
Ø.er.ly_ Ø are adjectives, those whose signature 
transform is Ø.er.ly_er are comparative 
adjectives, and those whose signature transform 
is Ø.er.ly_ly are adverbs. 

The connection is not perfect, however. 
Consider the signature Ø.ed.ing.s and its four 
signature transforms. While most words whose 
σ -transform is Ø.ed.ing.s_s are verbs (indeed, 
3rd person singular present tense verbs, as in he 
walks funny), many are in fact plural nouns (e.g., 
walks in He permitted four walks in the eighth 
inning is a plural noun). We will refer to this 
problem as the signature purity problem–it is 
essentially the reflex of the ambiguity of 
suffixes. 

In addition, many 3rd person singular present 
tense verbs are associated with other signature 
transforms, such as Ø.ing.s_s, Ø.ed.s_s, and so 
forth; we will refer to this as the signature-
collapsing problem, because all other things 
being equal, we would like to collapse certain 
signatures, such as Ø.ed.ing.s and Ø.ed.ing, 
since a stem that is associated with the latter 
signature could have appeared in the corpus with 
an -s suffix; removing the Ø.ed.ing signature and 
reassigning its stems to the Ø.ed.ing.s signature 
will in general give us a better linguistic analysis 
of the corpus, one that can be better used in the 

problem of lexical category induction. This is 
the reflex of the familiar data sparsity concern.2   

Since we ultimately want to use signatures 
and signature transforms to learn syntactic 
categories, we base the similarity measure 
between the signatures on the context.   

3 A more abstract statement of the 
problem  

A minimum description length (MDL) analysis 
is especially appropriate for machine learning of 
linguistic analysis because simultaneously it 
puts a premium both on analytical simplicity and 
on goodness of fit between the model and the 
data (Rissanen 1989).  

We will present first the mathematical 
statement of the MDL model of the morphology, 
in (1), following the analysis in Goldsmith 
(2001), followed by a description of the meaning 
of the terms of the expressions, and then present 
the modified version which includes additional 
terms regarding part of speech (POS) 
information, in (2) and (3).  

(1) Morphology 
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2 The signature-collapsing problem has another side to it as 
well. An initial morphological analysis of English will 
typically give rise to a morphological analysis of words 
such as move, moves, moved, moving with a signature 
whose stems include mov and whose affixes are e.ed.es.ing. 
A successful solution to the signature-collapsing problem 
will collapse Ø.ed.ing.s with e.ed.es.ing, noting that Ø ~ e, 
ed ~ed, es ~ s, and ing ~ ing in an obvious sense. 
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Equation (1a) states that our goal is to find 

the (morphological) grammar that 
simultaneously minimizes the sum of its own 
length and the compressed length of the data it 
analyzes, while (1b) specifies the grammar 
length (or model length) as the sum of the 
lengths of the links between the major 
components of the morphology: the list of letters 
(or phonemes) comprising the morphemes, the 
morphemes (stems and affixes), and the 
signatures. We use square brackets “[.]” to 
denote the token counts in a corpus containing a 
given morpheme or word. The first line of (1b) 
expresses the notion that each stem consists of a 
pointer to its signature and a list of pointers to 
the letters that comprise it; σ(t) is the signature 
associated with stem t, and we take its 
probability to be 

][
)]([

W
tσ , the empirical count of 

the words associated with σ(t) divided by the 
total count of words in the data. The second line 
expresses the idea that the morphology contains 
a list of affixes, each of which contains a list of 
pointers to the letters that comprise it. The third 
line of (1b) expresses the notion that a signature 
consists of a list of pointers to the component 
affixes. (1c) expresses the compressed length of 
each word in the data.3 

We now consider extending this model to 
include part of speech labeling, as sketched in 
(2). The principal innovation in (2) is the 
addition of part of speech tags; each affix is 
associated with one or more POS tags. As we 
                                                           
3 We do not sum over all occurrences of a word in the 
corpus; we count the compressed length of each word type 
found in the corpus. This decision was made based on the 
observation that the (compressed length of the) data term 
grows much faster than the length of the grammar as the 
corpus gets large, and the loss in ability of the model to 
predict word frequencies overwhelms any increase in 
model simplicity when we count word tokens in the data 
terms. We recognize the departure from the traditional 
understanding of MDL here, and assume the responsibility 
to explain this in a future publication. 

have seen, a path from a particular signature σ to 
a particular affix f constitutes what we have 
called a particular signature transform σ_f ; and 
we condition the probabilities of the POS tags in 
the data on the preceding signature 
transformation. As a result, our final model takes 
the form in (3). 
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The differences between the models are 

found in the added final term in (3b), which 
specifies the information required to predict, or 
specify, the part of speech given the signature 



transform, and the corresponding term in the 
corpus compression expression (3c).  

The model in (3) implicitly assumes that the 
true POSs are known; in a more complete 
model, the POSs play a direct role in assigning a 
higher probability to the corpus (and hence a 
smaller compressed size to the data). In the 
context of such a model, an MDL-based learning 
device searches for the best assignment of POS 
tags over all possible assignments. Instead of 
doing that in this paper, we employ the 
TreeTagger (Schmid, 1994) based tags (see 
section 5 below), and make the working 
assumption that optimization of description 
length over all signature-analyses and POS tags 
can be approximated by optimization over all 
signature-analyses, given the POS tags provided 
by TreeTagger. 

4 The collapsing of signatures 

We describe in this section our proposed 
algorithm, using context vectors to collapse 
signatures together, composed of a sequence of 
operations, all but the first of which may be 
familiar to the reader:  

Replacement of words by signature-
transforms: The input to our algorithm for 
collapsing signatures is a modified version of 
the corpus which integrates the (unsupervised) 
morphological analyses in the following way. 
First of all, we leave unchanged the 200 most 
frequent words (word types). Next, we replace 
words belonging to the K most reliable 
signatures (where K=50 in these experiments) 
by their associated signature transforms, and we 
in effect ignore all other words, by replacing 
them by a distinguished “dummy” symbol. In 
the following, we refer to our high frequency 
words and signature transforms together as 
elements—so an element is any member of the 
transformed corpus other than the “dummy”.   

Context vectors based on mutual 
information: By reading through the corpus, we 
populate both left and right context vectors for 
each element (=signature-transform and high-
frequency word)  by observing the elements that 
occur adjacent to it. The feature indicating the 
appearance of a particular word on the left is 
always kept distinct from the feature indicating 
the appearance of the same word on the right. 

The features in a context vector are thus 
associated with the members of the element 
vocabulary (and indeed, each member of the 
element vocabulary occurs as two features: one 
on the left, one on the right). We assign the 
value of each feature y of x’s context vector as 
the pointwise mutual information of the 
corresponding element pair (x, y), defined as 

)()(
),(log
yprxpr

yxpr . 

Simplifying context vectors with “idf”: In 
addition, because of the high dimensionality of 
the context vector and the fact that some features 
are more representative than others, we trim the 
original context vector. For each context vector, 
we sort features by their values, and then keep 
the top N (in general, we set N to 10) by setting 
these values to 1, and all others to 0. However, 
in this resulting simplified context vector, not all 
features do equally good jobs of distinguishing 
syntactical categories. As Wicentowski (2002) 
does in a similar context, we assign a weight  

if
w  to each feature fi in a fashion parallel to 
inverse document frequency (idf; see Sparck 
Jones 1973), or 

inappearsfeaturethiselements
elementsdistincttotal

#
#log . 

We view these as the diagonal elements of a 
matrix M (that is, mi,i = 

if
w ). We then check the 

similarity between two simplified context 
vectors by computing the weighted sum of the 
dot product of them. That is, given two 
simplified context vectors c and d, their 
similarity is defined as cTMd. If this value is 
larger than a threshold θ that is set as one 
parameter, we deem these two context vectors to 
be similar. Then we determine the similarity 
between elements by checking whether both left 
and right simplified context vectors of them are 
similar (i.e., their weighted dot products exceed 
a threshold θ). In the experiments we describe 
below, we explore four settings θ for this 
threshold: 0.8 (the most “liberal” in allowing 
greater signature transform collapse, and hence 
greater signature collapse), 1.0, 1.2, and 1.5. 

Calculate signature similarity: To avoid 
considering many unnecessary pairs of 
signatures, we narrow the candidates into 
signature pairs in which the suffixes of one 
constitute a subset of suffixes of the other, and 
we set a limit to the permissible difference in the 



lengths of the signatures in the collapsed pairs, 
so that the difference in number of affixes 
cannot exceed 2. For each such pair, if all 
corresponding signature transforms are similar 
in the sense defined in the preceding paragraph, 
we deem the two signatures to be similar. 

Signature graph: Finally, we construct a 
signature graph, in which each signature is 
represented as a vertex, and an edge is drawn 
between two signatures iff they are similar, as 
just defined. In this graph, we find a number of 
cliques, each of which, we believe, indicates a 
cluster of signatures which should be collapsed. 
If a signature is a member of two or more 
cliques, then it is assigned to the largest clique 
(i.e., the one containing the largest number of 
signatures).4  

5 Experiments 

We obtain the morphological analysis of the 
Brown corpus (Kučera and Francis, 1967) using 
the Linguistica software (http://linguistica. 
uchicago.edu), and we use the TreeTagger to 
assign a Penn TreeBank-style part-of-speech tag 
to each token in the corpus. We then carry out 
our experiment using the Brown corpus 
modified in the way we described above. Thus, 
for each token of the Brown corpus that our 
morphology analyzer analyzed, we have the 
following information: its stem, its signature 

                                                           
4 Our parameters are by design restrictive, so 

that we declare only few signatures to be similar, 
and therefore the cliques that we find in the 
graph are relatively small. One way to enlarge 
the size of collapsed signatures would be to 
loosen the similarity criterion. This, however, 
introduces too many new edges in the signatures 
graph, leading in turn to spurious collapses of 
signatures. We take a different approach, and 
apply our algorithms iteratively. The idea is that 
if in the first iteration, two cliques did not have 
enough edges between their elements to become 
a single new signature, they may be more 
strongly connected in the second iteration if 
many of their elements are sufficiently similar. 
On the other hand, cliques that were dissimilar 
in the first iteration remain weakly connected in 
the second.  
 

(i.e., the signature to which the stem is 
assigned), the suffix which the stem attains in 
this occurrence of the word (hence, the 
signature-transform), and the POS tag. For 
example, the token polymeric is analyzed into 
the stem polymer and the suffix ic, the stem is 
assigned to the signature Ø.ic.s, and thus this 
particular token has the signature transform 
Ø.ic.s_ic. Furthermore, it was assigned POS-tag 
JJ, so that we have the following entry: 
“polymeric JJ Ø.ic.s_ic”. 

Before performing signature collapsing, we 
calculate the description length of the 
morphology and the compressed length of the 
words that our algorithm analyzes and call it 
baseline description length (DL0). 

Now we apply our signature collapsing 
algorithm under several different parameter 
settings for the similarity threshold θ, and 
calculate the description length DLθ of the 
resulting morphological and lexical analysis 
using  (3).  We know that the smaller the set of 
signatures, the smaller is the cost of the model. 
However, a signature collapse that combines 
signatures with different distributions over the 
lexical categories will result in a high cost of the 
data term (3c). The goal was therefore to find a 
method of collapsing signatures such that the 
reduction in the model cost will be higher than 
the increase in the compressed length of the data 
so that the total cost will decrease.  

As noted above, we perform this operation 
iteratively, and refer to the description length of 
the ith iteration, using a threshold θ, as

θ

iiterDL = . 
We used random collapsing in our 

experiments to ensure the expected relationship 
between appropriate collapses and description 
length. For each signature collapsing, we created 
a parallel situation in which the number of 
signatures collapsed is the same, but their choice 
is random.  We calculate the description length 
using this “random” analysis as 

θ

randomDL . We 
predict that this random collapsing will not 
produce an improvement in the total description 
length. 



6 Results and discussion 

Table 1 presents the description length, broken 
into its component terms (see (3)), for the 
baseline case and the alternative analyses 
resulting from our algorithm. The table shows 
the total description length of the model, as well 
as the individual terms: the signature term 
DL(σ), the suffix term DL(F), the lexical 
categories term, DL(P), total morphology, 
DL(M), and the compressed length of the data, 
DL(D). We present results for two iterations for 
four threshold values (θ=0.8,1.0,1.2,1.5) using 
our collapsing algorithm.  

Table 2 presents 
θ

randomDL  derived from the 
random collapsing, in a fashion parallel to Table                
1. We show the results for only one iteration of 
random collapsing, since the first iteration 
already shows a substantial increase in 
description length. 

Figure 1 and Figure 2 present graphically the 
total description length from Tables 1 and 2 
respectively. The reader will see that all 

collapsing of signatures leads to a shortening of 
the description length of the morphology per se, 
and an increase in the compressed length of the 
data. This is an inevitable formal consequence of 
the MDL-style model used here. The empirical 
question that we care about is whether the 
combined description length increases or 
decreases, and what we find is that when 
collapsing the signatures in the way that we 
propose to do, the combined description length 
decreases, leading us to conclude that this is, 
overall, a superior linguistic description of the 
data. On the other hand, when signatures are 
collapsed randomly, the combined description 
length increases. This makes sense; randomly 
decreasing the formal simplicity of the 
grammatical description should not improve the 
overall analysis. Only an increase in the formal 
simplicity of a grammar that is grammatically 
sensible should have this property. Since our 
goal is to develop an algorithm that is 
completely data-driven and can operate in an  
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Figure 2 Comparison of DLs with random 

collapse of signatures (see text)
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θ
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#σ 50 41 35 41 34 44 42 46 45 
DL(σ) 47,630 45,343 42,939 45,242 43,046 44,897 44,355 46,172 45,780 
DL(F) 160 156 156 153 143 158 147 163 164 
DL(P) 2,246 2,087 1,968 2,084 1,934 2,158 2,094 2,209 2,182 
DL(M) 50,218 47,768 45,244 47,659 45,304 47,395 46,777 48,724 48,306 
DL(D) 315,165 316,562 318,687 316,615 318,172 316,971 317,323 315,910 316,251 
Total 
DL 

365,383 364,330 363,931 364,275 363,476 364,367 364,101 364,635 364,558 

Table 1.   DL and its individual components for baseline and the resulting cases when collapsing 
signatures using our algorithm. 



 
 DL0 8.0=θ

randomDL  
0.1=θ

randomDL  
2.1=θ

randomDL  
5.1=θ

randomDL  

#σ 50 41 41 44 46 
DL(σ) 47,630 44,892 45,126 45,788 46,780 
DL(F) 160 201 198 187 177 
DL(P) 2,246 2,193 2,195 2,212 2,223 
DL(M) 50,218 47,468 47,700 48,369 49,362 
DL(D) 315,165 320,200 319,551 318,537 316,874 
Total DL 365,383 367,669 367,252 366,907 366,237 

Table 2. DL and its individual components for baseline and the 
resulting cases when collapsing signatures randomly.

 
 
 

unsupervised fashion, we take this evidence as 
supporting the appropriateness of our algorithm as 
a means of collapsing signatures in a 
grammatically and empirically reasonable way. 

We conclude that the collapsing of signatures 
on the basis of similarity of context vectors of 
signature transforms (in a space consisting of high 
frequency words and signature transforms) 
provides us with a useful and significant step 
towards solving the signature collapsing problem. 
In the context of the broader project, we will be 
able to use signature transforms as a more effective 
means for projecting lexical categories in an 
unsupervised way. 

As Table 1 shows, we achieve up to 30% 
decrease in the number of signatures through our 
proposed collapse. We are currently exploring 
ways to increase this value through powers of the 
adjacency matrix of the signature graph. 

In other work in progress, we explore the 
equally important signature purity problem in 
graph theoretic terms: we split ambiguous 
signature transforms into separate categories when 
we can determine that the edges connecting left-
context features and right-context features can be 
resolved into two sets (corresponding to the 
distinct categories of the transform) whose left-
features have no (or little) overlap and whose right 
features have no (or little) overlap. We employ the 
notion of minimum cut of a weighted graph to 
detect this situation.
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